elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Machine learning for the generative design of mechanical metamaterials

Felsch, Gerrit Andreas (2025) Machine learning for the generative design of mechanical metamaterials. Dissertation, Albert-Ludwigs-Universität Freiburg. doi: 10.6094/UNIFR/274409.

[img] PDF
20MB

Offizielle URL: https://freidok.uni-freiburg.de/data/274409

Kurzfassung

Mechanical metamaterials - engineered materials whose behavior is defined by their internal structure rather than their base material - have received great attention for the unusual properties they can exhibit. However, while the forward problem of predicting the mechanical behavior of a given metamaterial can be reliably done through simulation or experiments, the inverse problem - designing metamaterials with specific properties - remains difficult, especially for heterogeneous metamaterials composed of multiple unit cells. This dissertation explores the use of generative machine learning to address this inverse design problem. The first part of the work investigates how inverse and generative models can be conditioned to produce unit cells with prescribed mechanical properties and how they can be used to generate multiple valid solutions for the same target. This is examined using a curved-beam metamaterial, which allows a compact geometric representation without complex design restrictions. The effect these restrictions have on the generative models is investigated in the second part. For this, a number of generative models - Variational Autoencoders, Generative Adversarial Networks, and Diffusion Models - are evaluated on a kirigami metamaterial where dependencies between the cuts cause intricate design constraints. The final part covers the challenges that arise when generative models are applied to heterogeneous metamaterials, in which multiple unit cells are combined to create spatially varying mechanical properties. The results show that the applicability of generative models for the design of metamaterials strongly depends on the choice of geometric parameterization. Generative models make assumptions about their input data that generally hold for images, but can be invalid for metamaterials when complex dependencies between the input parameters exist. B-splines can provide a representation without those dependencies and are therefore well suited to be paired up with generative models. Furthermore, it is also important how these geometrical parameters are sampled to create the training data for the generative models, as this sampling also affects the distribution of the properties in the training data. Overall, while generative machine learning models prove effective for the inverse design of mechanical metamaterials their successful application requires careful parameterization and selection of the training data.

elib-URL des Eintrags:https://elib.dlr.de/220213/
Dokumentart:Hochschulschrift (Dissertation)
Titel:Machine learning for the generative design of mechanical metamaterials
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Felsch, Gerrit Andreasgerrit.felsch (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:30 November 2025
Erschienen in:FreiDok
Open Access:Ja
DOI:10.6094/UNIFR/274409
Seitenanzahl:139
Status:veröffentlicht
Stichwörter:Metamaterial, Generative KI, Inverses Problem, Maschinelles Lernen, Auxetisches Material, Elementarzelle
Institution:Albert-Ludwigs-Universität Freiburg
Abteilung:Technische Fakultät
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehr und Auswirkungen
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AI - Luftverkehr und Auswirkungen
DLR - Teilgebiet (Projekt, Vorhaben):L - Lufttransportbetrieb und Folgenabschätzung
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugführung > Unbemannte Luftfahrzeugsysteme
Hinterlegt von: Felsch, Gerrit Andreas
Hinterlegt am:09 Dez 2025 08:04
Letzte Änderung:09 Dez 2025 08:04

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.