elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Using Texture-Based Image Segmentation and Machine Learning With High-Resolution Satellite Imagery to Assess Permafrost Degradation Landforms in the Russian High Arctic

Inauen, Cornelia M. und Nitze, Ingmar und Langer, Moritz und Morgenstern, Anne und Hajnsek, Irena und Grosse, Guido (2025) Using Texture-Based Image Segmentation and Machine Learning With High-Resolution Satellite Imagery to Assess Permafrost Degradation Landforms in the Russian High Arctic. Journal of Geophysical Research: Machine Learning and Computation, 2 (3). Wiley. doi: 10.1029/2024JH000550. ISSN 2993-5210.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
10MB

Kurzfassung

Amplified climate change across the Arctic causes significant permafrost thaw and an increase of permafrost degradation landforms. These landforms range from fine-scale degrading ice wedge-polygon-networks to large-scale features such as thermo-erosional gullies and reshape entire landscapes. In particular the expansion of thermo-erosional gullies could have far-reaching consequences by restructuring drainage pathways. Our study aims at finding a suitable remote sensing-based approach for quantifying landscape-scale permafrost degradation in gully-dominated Arctic landscapes. We use historical and recent high-resolution panchromatic satellite imagery allowing multi-decadal analysis of degradation trajectories. Given that degradation stages are characterized by distinct but subtle textural characteristics in satellite imagery, we tested texture-based machine learning segmentation methods including Random Forest (RF) using gray level co-occurrence matrix (GLCM) texture features and deep learning Convolutional Neural Networks (CNNs) using a UNet architecture. For CNN, we tested various framework adjustments. Our results showed that CNN outperforms RF particularly for complex texture-defined classes. CNN reached a micro mIoU of 0.71 (accuracy 83.2%) compared to 0.61 (accuracy 75.9%) for RF. Well-developed baydzherakhs, an advanced stage of ice-wedge-polygon degradation, were detected with high confidence (recall of 0.78–0.96 for CNN). Data augmentation and the use of GLCM features within CNN enhanced robustness against domain shifts. However, the most efficient way to adapt the trained model for additional sites was achieved through targeted fine-tuning. In conclusion, CNN segmentation demonstrated satisfying performance in quantifying fuzzy permafrost degradation stages. It can be expanded in space and time and therefore enables studying long-term permafrost degradation dynamics.

elib-URL des Eintrags:https://elib.dlr.de/220139/
Dokumentart:Zeitschriftenbeitrag
Titel:Using Texture-Based Image Segmentation and Machine Learning With High-Resolution Satellite Imagery to Assess Permafrost Degradation Landforms in the Russian High Arctic
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Inauen, Cornelia M.Permafrost Research Section, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Nitze, IngmarAlfred-Wegener-Institut, PotsdamAlfred Wegener Insitut (AWI)https://orcid.org/0000-0002-1165-6852NICHT SPEZIFIZIERT
Langer, MoritzAlfred-Wegener-Institut, Potsdamhttps://orcid.org/0000-0002-2704-3655NICHT SPEZIFIZIERT
Morgenstern, AnneAlfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hajnsek, IrenaIrena.Hajnsek (at) dlr.dehttps://orcid.org/0000-0002-0926-3283198517686
Grosse, GuidoAlfred-Wegener-Institut, PotsdamNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:21 August 2025
Erschienen in:Journal of Geophysical Research: Machine Learning and Computation
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:2
DOI:10.1029/2024JH000550
Verlag:Wiley
ISSN:2993-5210
Status:veröffentlicht
Stichwörter:Permafrost, Machine Learning, Remote Sensing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Polarimetrische SAR-Interferometrie HR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme > Radarkonzepte
Hinterlegt von: Hajnsek, Dr.rer.nat. Irena
Hinterlegt am:02 Dez 2025 11:02
Letzte Änderung:02 Dez 2025 11:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.