Rewicki, Ferdinand und Denzler, Joachim und Niebling, Julia (2025) Anomalous Agreement: How to find the Ideal Number of Anomaly Classes in Correlated, Multivariate Time Series Data. AI for Time Series Workshop @ AAAI 2025, 2025-02-25 - 2025-03-04, Philadelphia, USA.
|
PDF
1MB |
Kurzfassung
Detecting and classifying abnormal system states is critical for condition monitoring, but supervised methods often fall short due to the rarity of anomalies and the lack of labeled data. Therefore, clustering is often used to group similar abnormal behavior. However, evaluating cluster quality without ground truth is challenging, as existing measures such as the Silhouette Score (SSC) only evaluate the cohesion and separation of clusters and ignore possible prior knowledge about the data. To address this challenge, we introduce the Synchronized Anomaly Agreement Index (SAAI), which exploits the synchronicity of anomalies across multivariate time series to assess cluster quality. We demonstrate the effectiveness of SAAI by showing that maximizing SAAI improves accuracy on the task of finding the true number of anomaly classes K in correlated time series by 0.23 compared to SSC and by 0.32 compared to X-Means. We also show that clusters obtained by maximizing SAAI are easier to interpret compared to SSC.
| elib-URL des Eintrags: | https://elib.dlr.de/220083/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
| Titel: | Anomalous Agreement: How to find the Ideal Number of Anomaly Classes in Correlated, Multivariate Time Series Data | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2025 | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Time Series Clustering, Metric, Anomaly Discovery, Time Series Mining | ||||||||||||||||
| Veranstaltungstitel: | AI for Time Series Workshop @ AAAI 2025 | ||||||||||||||||
| Veranstaltungsort: | Philadelphia, USA | ||||||||||||||||
| Veranstaltungsart: | Workshop | ||||||||||||||||
| Veranstaltungsbeginn: | 25 Februar 2025 | ||||||||||||||||
| Veranstaltungsende: | 4 März 2025 | ||||||||||||||||
| Veranstalter : | The Association for the Advancement of Artificial Intelligence | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt EDEN LUNA, R - EDEN ISS Follow-on | ||||||||||||||||
| Standort: | Jena | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||
| Hinterlegt von: | Rewicki, Ferdinand | ||||||||||||||||
| Hinterlegt am: | 03 Dez 2025 11:11 | ||||||||||||||||
| Letzte Änderung: | 03 Dez 2025 11:11 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags