Bardtke, Leonard und Naeem, Nabih und Kalliatakis, Nikolaos und Shiva Prakasha, Prajwal und Clemen, Thomas (2025) Multi-Agent Deep Reinforcement Learning Framework for Efficient Aerial Wildfire Fighting. In: 15th EASN International Conference on Innovation in Aviation & Space towards sustainability today and tomorrow. MDPI. 15th EASN International Conference, 2025-10-14 - 2025-10-17, Madrid, Spain. (eingereichter Beitrag)
|
PDF
- Nur DLR-intern zugänglich
671kB |
Kurzfassung
The increasing severity of global wildfires requires advanced suppression strategies to mitigate impacts on the environment and human life. This work investigates the applicability of Multi-Agent Reinforcement Learning (MARL) for aerial wildfire suppression using the SoSID Toolkit, an agent-based grid simulation grounded in cellular automata fire propagation. To enhance interpretability and support the reconstruction of learned tactics, this work introduces the Dual Decomposition Framework, providing a modular structure for both the reward function and the observation space. This design enables the contribution of individual components to be systematically evaluated, allowing the identification of elements most relevant for effective wildfire suppression. The learned MARL policy is compared against a heuristic strategy inspired by real-world firefighting practice. The reward analysis confirms that the Dual Decomposition Framework enhances transparency in agent behavior by analyzing the contribution of individual components. The experiments further show that the learned policy can outperform the heuristic approach in terms of burned-area reduction when fire spread sensitivity is low, demonstrating the potential of MARL for effective suppression strategies. However, performance declines as spread sensitivity increases, indicating limited generalization and signs of overfitting to training conditions. The findings suggest that approaches such as curriculum learning may improve robustness under faster-spreading fire dynamics.
| elib-URL des Eintrags: | https://elib.dlr.de/219955/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
| Titel: | Multi-Agent Deep Reinforcement Learning Framework for Efficient Aerial Wildfire Fighting | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 30 November 2025 | ||||||||||||||||||||||||
| Erschienen in: | 15th EASN International Conference on Innovation in Aviation & Space towards sustainability today and tomorrow | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| Verlag: | MDPI | ||||||||||||||||||||||||
| Name der Reihe: | 15th EASN International Conference on Innovation in Aviation & Space towards sustainability today and tomorrow | ||||||||||||||||||||||||
| Status: | eingereichter Beitrag | ||||||||||||||||||||||||
| Stichwörter: | Reinforcement Learning, Multi-Agent Reinforcement Learning, Multi-Agent Deep Reinforcement Learning, Wildfire Fighting, Agent-based Simulation, Explainable Reinforcement Learning, Reward Decomposition, Observation Decomposition | ||||||||||||||||||||||||
| Veranstaltungstitel: | 15th EASN International Conference | ||||||||||||||||||||||||
| Veranstaltungsort: | Madrid, Spain | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 14 Oktober 2025 | ||||||||||||||||||||||||
| Veranstaltungsende: | 17 Oktober 2025 | ||||||||||||||||||||||||
| Veranstalter : | EASN | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Unbemannte Flugsysteme, D - Kurzstudien [KIZ], L - Digitale Technologien | ||||||||||||||||||||||||
| Standort: | Hamburg | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Systemarchitekturen in der Luftfahrt > Luftfahrt-System-Konzepte und Bewertung | ||||||||||||||||||||||||
| Hinterlegt von: | Bardtke, Leonard | ||||||||||||||||||||||||
| Hinterlegt am: | 03 Dez 2025 12:41 | ||||||||||||||||||||||||
| Letzte Änderung: | 03 Dez 2025 12:41 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags