Hänsch, Ronny (2025) Deep learning based semantic analysis of SAR imagery: From images to maps. In: Deep Learning for Synthetic Aperture Radar Remote Sensing Elsevier. Seiten 227-250. doi: 10.1016/B978-0-44-336344-3.00015-5.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.sciencedirect.com/science/article/pii/B9780443363443000155
Kurzfassung
Semantic segmentation plays a central role in extracting detailed information regarding land cover, infrastructure, and natural disasters from SAR imagery. Semantic segmentation assigns a class label to every pixel in the image, enabling dense and context-aware mapping of semantic classes. This chapter explores how deep learning has transformed semantic segmentation from SAR images, tracing the evolution from traditional pixel-based classification to fully convolutional models and end-to-end semantic labeling pipelines. It highlights the specific challenges posed by SAR data and how these necessitate tailored preprocessing and model adaptations. The chapter also reviews state-of-the-art approaches, training strategies, and evaluation protocols, before presenting a practical case study demonstrating how U-Net-style architectures can be effectively applied to SAR imagery for flood mapping. As new SAR constellations launch and machine learning methods evolve, semantic segmentation will continue to be a key enabler for large-scale, reliable analysis of SAR data in both scientific and operational Earth observation.
| elib-URL des Eintrags: | https://elib.dlr.de/219719/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Beitrag in einem Lehr- oder Fachbuch | ||||||||||||
| Titel: | Deep learning based semantic analysis of SAR imagery: From images to maps | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | 2025 | ||||||||||||
| Erschienen in: | Deep Learning for Synthetic Aperture Radar Remote Sensing | ||||||||||||
| Referierte Publikation: | Nein | ||||||||||||
| Open Access: | Nein | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Nein | ||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||
| DOI: | 10.1016/B978-0-44-336344-3.00015-5 | ||||||||||||
| Seitenbereich: | Seiten 227-250 | ||||||||||||
| Herausgeber: |
| ||||||||||||
| Verlag: | Elsevier | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Semantic segmentation, UNet, Evaluation | ||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||
| Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||
| Hinterlegt von: | Hänsch, Ronny | ||||||||||||
| Hinterlegt am: | 26 Nov 2025 10:19 | ||||||||||||
| Letzte Änderung: | 26 Nov 2025 10:19 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags