elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Enhancing Public Transport Accessibility for People with Motor Disabilities Through Deep Learning on Graphs

Turno, Francesco und Yatskiv (Jackiva), Irina und Budiloviča, Evelīna (2025) Enhancing Public Transport Accessibility for People with Motor Disabilities Through Deep Learning on Graphs. Transport and Telecommunication, 26 (1), Seiten 82-89. Transport and Telecommunication Institute. doi: 10.2478/ttj-2025-0008. ISSN 1407-6160.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
836kB

Offizielle URL: https://sciendo.com/2/v2/download/article/10.2478/ttj-2025-0008.pdf

Kurzfassung

Globally, over a billion people live with disabilities, facing significant challenges in accessing public transport, which impacts their autonomy, social participation, and economic status. Current research indicates that common problems include inadequate service in terms of destination, timing, and travel duration, as well as physical barriers at stops and the behaviour and proficiency of transit staff. These issues are exacerbated for those with visual impairments or mobility challenges, such as wheelchair users, who face even greater obstacles. This research emphasizes the necessity of an “enabling transport” environment that considers all aspects of travel for those with limited mobility. This includes the physical layout of pedestrian routes, the design of buildings, and the functionality of public transportation systems. Practical measures like aligning bus floors with pavements, as mandated in the European Union, and optimizing the deployment of accessibility equipment like pallets are discussed as essential for improving access. The authors propose a research methodology that employs a graph-based approach in combination with recurrent neural networks models to suggest most accessible pathways considering fleet availability, vehicle capacity and road quality of sidewalks. The approach includes a comprehensive case study in Riga, Latvia, utilizing data from local transport operators and crowdsourced information to assess and address physical barriers. This innovative application of deep learning on graphs aims to significantly improve the inclusivity and efficiency of public transport for people with disabilities. The study emphasizes the broader benefits of creating accessible environments that improve usability for all citizens, not just those with disabilities.

elib-URL des Eintrags:https://elib.dlr.de/219659/
Dokumentart:Zeitschriftenbeitrag
Titel:Enhancing Public Transport Accessibility for People with Motor Disabilities Through Deep Learning on Graphs
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Turno, Francescofrancesco.turno (at) dlr.dehttps://orcid.org/0009-0002-2972-4144198522750
Yatskiv (Jackiva), Irinajackiva.i (at) tsi.lvNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Budiloviča, Evelīnabudilovica.e (at) tsi.lvNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Februar 2025
Erschienen in:Transport and Telecommunication
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:26
DOI:10.2478/ttj-2025-0008
Seitenbereich:Seiten 82-89
Verlag:Transport and Telecommunication Institute
ISSN:1407-6160
Status:veröffentlicht
Stichwörter:MaaS; wheelchair users; inclusivity; mobility data; graph theory; recurrent neural networks
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrssystem
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VS - Verkehrssystem
DLR - Teilgebiet (Projekt, Vorhaben):V - DiVe - Digital organisiertes Verkehrssystem, QC - QCMobility
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Verkehrsforschung > Räume in Mobilitäts- und Transportsystemen
Hinterlegt von: Turno, Francesco
Hinterlegt am:02 Dez 2025 12:01
Letzte Änderung:19 Jan 2026 17:33

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.