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Globally, over a billion people live with disabilities, facing significant challenges in accessing public transport, which impacts 

their autonomy, social participation, and economic status. Current research indicates that common problems include inadequate service 
in terms of destination, timing, and travel duration, as well as physical barriers at stops and the behaviour and proficiency of transit 
staff. These issues are exacerbated for those with visual impairments or mobility challenges, such as wheelchair users, who face even 
greater obstacles. This research emphasizes the necessity of an “enabling transport” environment that considers all aspects of travel 
for those with limited mobility. This includes the physical layout of pedestrian routes, the design of buildings, and the functionality 
of public transportation systems. Practical measures like aligning bus floors with pavements, as mandated in the European Union, and 
optimizing the deployment of accessibility equipment like pallets are discussed as essential for improving access. The authors propose 
a research methodology that employs a graph-based approach in combination with recurrent neural networks models to suggest most 
accessible pathways considering fleet availability, vehicle capacity and road quality of sidewalks. The approach includes a 
comprehensive case study in Riga, Latvia, utilizing data from local transport operators and crowdsourced information to assess and 

address physical barriers. This innovative application of deep learning on graphs aims to significantly improve the inclusivity and 
efficiency of public transport for people with disabilities. The study emphasizes the broader benefits of creating accessible 

environments that improve usability for all citizens, not just those with disabilities. 
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1. Introduction 

Social inclusion seeks to improve the conditions and opportunities of disadvantaged people based 

on factors such as age, gender, disability, ethnicity, religion, or socioeconomic status. It entails increasing 

their social participation by providing better access to resources, opportunities, and respect for their 

fundamental rights (Atkinson & Marlier, 2017). People with mobility impairments face unique safety and 

accessibility challenges in major cities. According to Zahabi et al. (2023), Mobility-as-a-Service (MaaS) 

systems should include design guidelines for real-time user location, continuous instructions, adaptability, 

reverse route support, live help, clear system instructions, and user feedback. 
Individuals with disabilities frequently face significant accessibility challenges, particularly on 

public transportation, as extensively documented (O'Neill, 2021; Bezyak & Sabella, 2017). Services 

frequently fail to meet their needs, with inaccessible pathways and stations reducing autonomy and 

socioeconomic status. Physical barriers, such as inadequate ramps and restrooms, pose significant obstacles 

for wheelchair users (Evcil, 2018). Participation in activities is limited by social, organizational, and 

attitudinal barriers, including discriminatory behaviours and inadequate communication infrastructure 

(Bridger & Evans, 2020). Technological barriers also limit accessibility, emphasizing the need for 

infrastructure designed for people with disabilities (Kamyabi & Alipour, 2018). Effective strategies include 

providing adequate transportation and professional services. Despite these efforts, many wheelchair users 

continue to rely on private vehicles due to limited public transportation. 
Addressing these barriers necessitates both physical adaptations and efforts to change societal 

attitudes toward disability by encouraging social inclusion and technological support (Deganis et al., 2021). 

Accessible design principles for users with motor disabilities should consider their unique challenges. 

Customizable user profiles enable personalized route planning; interactions should be designed with simple 

gestures; caregivers should be able to easily access updates in the proposed routes; and ultimately the design 
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of the system should minimize physical exertion while remaining accessible to users with varying motor 

abilities (Harriehausen-Muhlbauer, 2016). 

Despite advancements in navigation systems, a human-centric approach that takes individual 

constraints and preferences (e.g., points of interest, historical trips) is required. Understanding mobility 

behaviours is critical to improving public transportation (PT) systems. Over the last two decades, 

researchers such as Kim et al. (2021) and Welch & Widita (2019) have used PT smart card data to conduct 

spatiotemporal analyses of urban mobility patterns. The initial analyses look at the spatial distribution and 

dynamics of PT boarding over time. Zhong et al. (2017) examined boarding numbers and temporal patterns, 

whereas Briand et al. (2017) and Mohamed et al. (2016) clustered passengers and studied their behaviour. 

However, boarding data alone does not reveal all mobility trajectories, necessitating the estimation of trip 

destinations. Tao’s (2021) trip chain analysis demonstrates techniques for distinguishing final destinations 

using algorithms and time thresholds. Briand et al. (2017) used clustering techniques to examine demand 

regularity, whereas Goulet-Langlois et al. (2017) associated travel patterns with socio-demographic 

characteristics. Long & Thill (2015) and Qi et al. (2019) are two recent studies that combined smart card 

data with other sources to conduct comprehensive mobility analyses. For OD matrix estimation, common 

methods treat origin-destination trips as vectors grouped by Traffic Analysis Zones (TAZ), as demonstrated 

by Kumar et al. (2021). Xu et al. (2021) proposed a more data-driven approach, clustering POI for zone 

definition. 

Deep Learning applications have not been extensively studied for wheelchair user accessibility. This 

study examines a case study in Riga, Latvia, where graph-based approach and Recurrent Neural Networks 

(RNN) models (Yu, 2019) are used to identify accessible routes while considering transportation availability 

and sidewalk conditions. These models optimize loss functions representing accessibility predictions, and 

performance is measured using metrics such as mean squared error (MSE). 

Finally, this study employs advanced neural network techniques to improve urban public 

transportation accessibility for wheelchair users. This approach aims to improve the efficiency, inclusivity, 

and personalization of public transportation by integrating multiple data sources. 

2. Case study formulation 

Inadequate sidewalk infrastructure, poorly designed public transport facilities, and a general lack of 

real-time assistance exacerbate the difficulties of daily commutes. Such barriers prevent access to essential 

services and limit participation in community life and urban environments. The present case study based 

on Riga Public Transportation network and sidewalk infrastructure, illustrates how the integration of several 

data sources – such as GTFS static data, electronic ticket registration data, obtained from Riga Satiksme 

(local transport operator), and crowdsourced sidewalk data from OpenStreetMap – can enhance public 

transport accessibility, making daily travel within an urban setting far more manageable for individuals 

with mobility challenges. For simplicity and clarity, this practical case study presents a simulated trip of a 

20-year-old wheelchair user who needs to travel from the hospital to the university, arriving no later than 

10:30 AM. 

The public transit data from Riga Satiksme (Rīgas Satiksme, 2024) adheres to the General Transit 

Feed Specification (GTFS) standard and is essential for mapping accessible public transport routes and 

schedules. This analysis provides crucial information for individuals with disabilities, enabling them to plan 

their travel using routes with fewer changes and shorter walking distances. The dataset includes several key 

files: the agency file contains details about the transit agency, such as name, URL, contact information, 

time zone, and language; the routes file details each route with identifiers, names, descriptions, transport 

type, URLs, and visual identifiers like colour codes; the trips file links routes to specific trips, including 

trip identifiers, route identifiers, service IDs, trip directions, and physical line details. Additionally, the stop 

times file specifies arrival and departure times at each stop for every trip, while the stops file lists all stop 

with unique identifiers, names, descriptions, coordinates, and metadata about stop types and hierarchical 

relationships. The calendar file includes service schedules, availability by day, and exceptions like holidays 

or events, and the shapes file provides geospatial data for mapping vehicle paths along routes. The 

attributions file credits data providers and associated organizations. For wheelchair users, accessibility flags 

indicate whether routes and stops are suitable for wheelchair access, aiding in journey planning. 

The electronic ticket registration dataset (Rīgas Satiksme, 2024) captures every ticket validation, 

providing insights into passenger flow and ticket usage. This dataset includes the timestamp of ticket 

validation, a unique validation ID for each event, the card type indicating the type of ticket or pass used, 

the vehicle ID where the validation occurred, the route number linking validation to a specific route, and 

the stop ID identifying the stop where the ticket was validated. 

https://data.gov.lv/dati/dataset/6d78358a-0095-4ce3-b119-6cde5d0ac54f/resource/cad6da86-55b1-441a-9db5-8cd3574eb4ba/download/marsrutusaraksti03_2024.zip
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Ultimately OpenStreetMap (OpenStreepMap, 2024) offers detailed information about pedestrian 

pathways, including sidewalk widths, surfaces, and the availability of curb cuts and ramps. This data is 

crucial for assessing pedestrian accessibility and ensuring safe and reliable navigation through the city. 

Paths are defined by sequences of nodes and characterized by tags detailing their physical attributes like 

surface type, quality, and lighting conditions. 

3. Modelling an accessible transportation network  

Urban transportation networks must be inclusive to provide all citizens with equal opportunities to 

participate in social, economic, and cultural activities. For individuals with motor disabilities, this 

inclusivity hinges on accessible infrastructure and public transport systems. Modelling an accessible 

transportation network requires a multi-layered approach, accounting for both physical infrastructure and 

dynamic variables such as passenger counts on transit routes. This section provides a detailed account of 

how we model an accessible network, focusing on sidewalk walkability, public transport integration, and 

the use of deep learning models to enhance accessibility predictions. 

3.1. Assessment of sidewalk walkability 

Sidewalks form the foundation of urban mobility, serving as the connection between homes, 

workplaces, and transport systems. Their condition and accessibility directly impact the ease with which 

people — particularly those with mobility impairments — can navigate the city. To quantify sidewalk 

accessibility, we introduce a walkability score based on three key parameters: surface type, smoothness, 

and lighting. 

• Surface type (𝑋1): This parameter quantifies the material and structural quality of the sidewalk 

surface. It is rated on a scale from 1 to 5, where 5 corresponds to highly stable, wheelchair-

friendly surfaces like asphalt or concrete, and 1 corresponds to more challenging surfaces like 

gravel or dirt. 

• Smoothness ( 𝑋2 ): It measures the evenness and continuity of the sidewalk. Smooth, 

uninterrupted paths are essential for easy navigation by wheelchair users. Like surface type, it 

is rated from 1 to 5, with higher values assigned to sidewalks that offer better manoeuvrability. 

• Lightness (𝑋3): It is a binary parameter (1 or 0) that assesses whether the sidewalk is adequately 

lit. Well-lit sidewalks improve both the safety and comfort of users, especially during night-

time or in poorly lit areas. 

Then, walkability score, 𝐴𝑠, is calculated using the following weighted average formula:  

 

𝐴𝑠 = ∑ 𝛼𝑖𝑥𝑖𝑖∈𝑋 /∑ 𝛼𝑖𝑖∈𝑋 , (1) 

 

where 𝑋 ⊆ {𝑋1, 𝑋2, 𝑋3} is the set of available parameters, 𝑥𝑖  is the score is the score assigned to each 

parameter 𝑖 and 𝛼𝑖 is the weight assigned to each parameter 𝑖. Weights can be adjusted based on specific 

priorities or local conditions. For instance, if smoothness is particularly important due to frequent rain, it 

can be assigned a higher weight. 

After calculating 𝐴𝑠, the resulting scores are categorized into five walkability levels: inaccessible 

(𝐴𝑠 < 1.5 ); poor accessibility (1.5 ≤ 𝐴𝑠 ≤ 2.5 ); moderately accessible (2.5 ≤ 𝐴𝑠 ≤ 3.5 ); accessible 

(3.5 ≤ 𝐴𝑠 ≤ 4.5); and lastly, highly accessible (𝐴𝑠 ≥ 4.5). This scoring system not only allows us to 

visualize sidewalk accessibility across a city, highlighting the areas where infrastructure improvements are 

needed most urgently, but can also provide users with a real view of accessibility challenges in the local 

pedestrian network. 

3.2. Integration of public transport data 

While accessible sidewalks are crucial, individuals with mobility impairments also rely heavily on 

accessible public transport systems to navigate the city. In this section, we develop a pipeline to integrate 

public transport data, enabling us to identify the most accessible routes and stops. 

The public transport data, provided by the Riga public transit agency, adheres to the General Transit 

Feed Specification (GTFS). It includes several key datasets such as routes, trips, stops, and stop times. The 

first step in our analysis involves calculating the geodesic distance between key Points of Interest (POIs) 

(e.g., hospital, university) and transit stops. This ensures that all stops within a reasonable walking distance 

(e.g., 250 meters) are considered accessible. 

We focus on trolleybus routes in our case study since they are typically more accessible for 

wheelchair users. Using the GTFS data, routes are filtered based on the ‘route_type’ variable, which in this 
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context encodes trolleybus routes as 800. Temporal adjustments are made to trips that exceed 24 hours, 

allowing for the accurate identification of trips within specific time windows (e.g., from 08:00 to 

10:30 AM). 

To efficiently model the public transport network, we use a directed graph representation. A 

directed graph 𝐺 = (𝑉, 𝐸) is an ideal structure for modeling transportation systems, where 𝑉is represents 

the set of vertices (stops) and 𝐸 represents the set of edges (routes between stops). Each stop is represented 

as a node in the graph, with relevant attributes such as the stop name, latitude, and longitude. If the stop is 

not the first in the sequence, an edge is added between the current stop and the previous one. Each edge 

contains attributes such as the route identifier (e.g., ‘riga_trol_3’ or ‘riga_trol_15’), the departure time 

from the stop, and the arrival time at the next stop. 

The formal representation of an edge 𝑒𝑖→𝑗 between two consecutive stops 𝑣𝑖 and 𝑣𝑗 is: 

 

𝑒𝑖→𝑗 = (𝑣𝑖 , 𝑣𝑗 , 𝑟, 𝑡𝑑, 𝑡𝑎, ∆𝑡),  (2) 

 

where 𝑣𝑖 , 𝑣𝑗 are the consecutive stops, 𝑟 is the route identifier, 𝑡𝑑 is the departure time from stop 𝑣𝑖, 𝑡𝑎 is 

the arrival time at stop 𝑣𝑗, and ∆𝑡 is the travel time between 𝑣𝑖 and 𝑣𝑗.  

If a direct route doesn’t exist, transfer hubs – stops where multiple routes intersect – are identified 

using graph theory metrics. A transfer hub ℎ ∈ 𝑉 is defined based on one or more of the following criteria: 

• High degree: 𝑑𝑒𝑔(ℎ) is significantly higher than the average, meaning more routes connect at 

this stop. 

• Route intersections: Multiple distinct routes pass through ℎ. 

• Centrality: ℎ has a high betweenness centrality, meaning it lies on many shortest paths within 

the transport network. 

Transfer hubs are crucial for ensuring that users can switch between accessible routes with minimal 

difficulty. To conclude, by implementing this graph representation, the transport network can be efficiently 

analysed and optimized, ensuring that individuals with mobility impairments have access to the most 

effective and accessible transportation options. 

3.3. Prediction of passenger count 

While static infrastructure and transit data are vital for modeling an accessible transportation 

network, real-time and predictive data, such as passenger counts, are critical in ensuring that wheelchair 

users can navigate public transport at a given time. Crowded buses, even if physically accessible, may be 

difficult to use for wheelchair users. To address this, we employ Recurrent Neural Networks (RNNs), 

namely Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), to predict passenger loads 

and integrate these predictions into our graph-based model. 

Passenger counts are aggregated over defined time windows (e.g., every 10 minutes) to form a 

continuous time series for each route. The total passenger count 𝑋Δ𝑡(𝑛) for time window 𝑛 is calculated as: 

 

𝑋Δ𝑡(𝑛) = ∑ 𝑋(𝑡)𝑡∈[𝑡𝑛,𝑡𝑛+1)
, (3)  

 

where where 𝑡𝑛 and 𝑡𝑛+1 are the start and end times of the 𝑛-th time window. 

To capture temporal dependencies, we create lagged features, representing the passenger counts 

from previous time steps. The lag of previous steps 𝜏 for time window 𝑛 is defined as 𝐿(𝑛) = 𝑋Δ𝑡(𝑛 − 𝜏). 
Hence, the feature vector for time step 𝑛 becomes: 

 

𝑋𝑛 = (𝑋Δ𝑡(𝑛), 𝑋Δ𝑡(𝑛 − 1), 𝑋Δ𝑡(𝑛 − 2), … , 𝑋Δ𝑡(𝑛 − 𝜏))𝑇. (4) 

 

Ultimately, the passenger count data is normalized using min-max scaling. This normalized data is 

used as input for the two types of RNNs. Both models are trained to predict future passenger loads based 

on electronic ticket registration data. The models are compiled using the Adam optimizer and Mean 

Absolute Error (MAE) as the loss function. Training is conducted on the training dataset for 20 epochs 

with a batch size of 32, and 20% of the training data is used for validation. After training process, the 

models can predict passenger counts on the test dataset. An Exponential Moving Average (EMA) method 

is also implemented as a baseline for comparison. Performance metrics, including MAE, Mean Squared 

Error (MSE), and Root Mean Squared Error (RMSE), are calculated for each model to evaluate their 

prediction accuracy. 
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For each stop 𝑣𝑖, the predicted passenger count 𝑋̂(𝑣𝑖) is added as a node attribute. This ensures that 

each node (stop) has an associated predicted passenger count. Edges are then marked as wheelchair 

accessible based on the predicted passenger counts. If the passenger count on a route is below a specified 

threshold 𝛿 (e.g., according to experts’ estimation is 50% of fleet passenger load), the edge is marked as 

wheelchair accessible. This criterion assumes that routes with lower passenger volumes are easier for 

wheelchair users to navigate. 

4. Case study results 

The first part of the analysis involves evaluating the accessibility of sidewalk infrastructure across 

Riga (Figure 1). The sidewalk segments are color-coded to represent different levels of accessibility, with 

red indicating the lowest accessibility and green indicating the highest, based on walkability score 

formulated in (3.1). Most of the sidewalks in the central areas of Riga are marked in red, suggesting poor 

conditions for wheelchair users and individuals with mobility challenges. Conversely, certain segments, 

particularly in parks and newly developed areas, are marked in green, indicating optimal accessibility. 

Detailed attributes for each sidewalk segment, such as surface type, smoothness, and lighting conditions, 

provide insights into the specific characteristics affecting accessibility. For example, a segment marked 

“Surface: Paving_stones, Smoothness: Average, Lighting: Lit” indicates a well-maintained, well-lit 

segment conducive to easy navigation. 

Moreover, the integration public transport routes provide a holistic view of how these two crucial 

aspects of urban mobility interact. Public transport routes are highlighted using blue and purple lines, with 

stops marked by information icons indicating additional details available at these points. This integrated 

view reveals that sidewalks around central transport stops are predominantly marked in red, indicating poor 

accessibility. This poses significant challenges for individuals with mobility issues when transitioning from 

transport stops to sidewalks. Key stops and transfer points in central locations and major intersections, are 

particularly highlighted. These areas are critical for ensuring smooth transitions and must be prioritized for 

accessibility improvements. 

 

 

Figure 1. Assessment of sidewalk accessibility (left) and integration of optimal public transport routes  
from hospital to university (right) 

 

The next phase of the analysis focuses on predictive modelling of passenger counts for the calculated 

trip segment, according to method formulated in (3.2), include two suggested routes: Trolleybus 3 and 

Trolleybus 15 (Figure 2). Both time series displays the actual passenger counts alongside predictions from 

the LSTM, GRU, and EMA models. The predictions closely follow the actual passenger counts, although 

there are some discrepancies. Surprisingly, the moving average method again provides a slight superior 

accuracy with a significantly lower MAE, MSE and RMS, compared to the Deep Learning models. The 

table below compares the benchmark results for the models across the two routes, summarising the accuracy 

values obtained for each model and route combination. 

Although the EMA model consistently shows increased performance with lower MAE, MSE, and 

RMSE values for both routes, The LSTM and GRU models have comparable performance (Table 1) and 

this suggest that, despite the advanced capabilities of LSTM and GRU models in capturing temporal 
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dependencies, the simpler EMA model is more effective for this specific passenger count prediction task, 

likely due to its ability to smooth out short-term fluctuations and capture the overall trend. 

Finally, the enhanced graph (Figure 3) showcases a detailed visualization of a public transport 

network with predictions on passenger counts and indications of wheelchair accessibility. Each node in the 

graph represents a stop in the public transport network and includes labels with the stop name, predicted 

passenger count, departure time, and arrival time. The edges connecting these nodes represent the route 

segments between the stops and are labeled with the route number and the wheelchair accessibility status. 

The predicted passenger counts are derived from LSTM model predictions and are critical in determining 

the wheelchair accessibility status of the routes. Lower passenger counts facilitate easier navigation for 

wheelchair users. The data shows a range of predicted counts, with several stops well below the 40-

passenger threshold, reinforcing the accessibility of these routes. Notably, “Mazā Kalna iela” and “Katoļu 

iela” have higher passenger counts but still maintain accessibility status, possibly due to sufficient 

infrastructure to handle higher passenger volume. 

 
Table 1. Benchmark comparing models’ performance along trolleybus routes 

 

Model Tr 3/MAE Tr 3/MSE Tr 3/RMSE Tr 15/MAE Tr 15/MSE Tr 15/RMSE 

LSTM 6,5606 124,0955 11,1398 13,0864 360,5079 18,987 

GRU 6,5603 124,0044 11,1357 13,4695 363,8071 19,0737 

EMA 4,7719 62,981 7,936 9,4632 189,956 13,7825 

 

 

Figure 2. Comparison of LSTM, GRU predictions for Trolleybus 3/Trolleybus 15 (including baseline) 

 

 
Figure 3. Trip segment (hospital to university) representation combining public transport accessible route and LSTM predictions 
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5. Discussion and conclusion 

This research has the potential to enhances the accessibility of Riga’s public transportation and 

sidewalk infrastructure for individuals with motor disabilities by integrating various data sources. The 

assessment of sidewalk infrastructure revealed substantial variability in accessibility, with central areas 

generally in poorer condition compared to newly developed areas and parks. The integration of public 

transport data into a directed graph facilitated efficient route optimization, identifying the most accessible 

routes and transfer hubs for wheelchair users. Predictive modelling using deep learning models and the 

EMA method provided valuable insights into passenger counts, with the simpler EMA model 

outperforming the more complex models in this specific context. The enhanced graph, incorporating 

predicted passenger counts, allowed for a dynamic assessment of route accessibility, making it easier for 

wheelchair users to plan their journeys. 

This study has important implications for improving MaaS demand of vulnerable users, 

personalizing public transport services, highlighting critical areas needing infrastructure improvements and 

providing insights for optimizing routes and schedules. The methodology can serve as a model for other 

cities aiming to enhance accessibility for people with disabilities, offering a framework for real-time 

accessibility assessments using advanced predictive models and real-time data sources. 

However, several limitations must be acknowledged, particularly the issue of incomplete data and 

inconsistency from data providers. The accuracy of GTFS data relies on the completeness and timeliness 

of updates from the transit agency. Any discrepancies or delays in data updates can significantly affect 

route planning accuracy. Additionally, the crowdsourced data from OpenStreetMap may have 

inconsistencies in quality and coverage, leading to potential gaps in accessibility information. Despite these 

limitations, the research provides a robust framework for improving urban mobility for individuals with 

motor disabilities. Future studies should focus on incorporating additional data sources and exploring Graph 

Neural Networks to further enhance the model’s applicability and effectiveness in creating more inclusive 

urban environments. 
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