Traoré, Kalifou René und Jancauskas, Vytautas und Belmonte, Juan Pablo Espejo und Espinoza Molina, Daniela und Kuzu, Ridvan Salih und Rösel, Anja und Camero, Andres (2025) Grünblick: an AI Software Toolkit of Above the Ground Biomass Estimation. WAW Machine Learning 11, 2025-10-28 - 2025-10-30, Oberpfaffenhofen.
|
PDF
- Nur DLR-intern zugänglich
366kB |
Kurzfassung
Estimating forest biomass from satellite data is crucial for monitoring global carbon stocks and understanding forests’ role in mitigating climate change. Remote sensing provides large-scale, consistent, and frequent observations, making it more efficient than traditional field measurements. Above the Ground Biomass (AGB) estimates help assess deforestation, forest degradation, and land-use changes, which are vital for conservation efforts and policymaking. Accurate biomass data support the design of accurate climate models and carbon credit programs, ensuring better management of natural resources. Additionally, satellite-based monitoring enhances early detection of illegal logging and forest loss, aiding enforcement and sustainable land management. To support applications that benefit from global-scale biomass monitoring, we present a toolbox for Above-Ground Biomass (AGB) estimation, specifically targeting regions in the Northern Hemisphere. This toolbox features a suite of pixel-wise regression models based on a modern deep learning framework (U-Net). The model is optimized using a variety of backbone architectures, including ResNet and EfficientNet, to enhance performance. Additionally, the toolbox incorporates multiple data modalities, such as the fusion of Sentinel imagery, to improve estimation accuracy.
| elib-URL des Eintrags: | https://elib.dlr.de/219371/ | ||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||||||
| Titel: | Grünblick: an AI Software Toolkit of Above the Ground Biomass Estimation | ||||||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||||||
| Datum: | 2025 | ||||||||||||||||||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
| Stichwörter: | AI Software Toolkit, Biomass Estimation, Remote Sensing. | ||||||||||||||||||||||||||||||||
| Veranstaltungstitel: | WAW Machine Learning 11 | ||||||||||||||||||||||||||||||||
| Veranstaltungsort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
| Veranstaltungsbeginn: | 28 Oktober 2025 | ||||||||||||||||||||||||||||||||
| Veranstaltungsende: | 30 Oktober 2025 | ||||||||||||||||||||||||||||||||
| Veranstalter : | MF-DAS, DLR Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||||||
| Hinterlegt von: | Traoré, Mr René | ||||||||||||||||||||||||||||||||
| Hinterlegt am: | 24 Nov 2025 11:11 | ||||||||||||||||||||||||||||||||
| Letzte Änderung: | 24 Nov 2025 11:11 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags