elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Methodology for the optimized localization of charging infrastructure for electric vehicles in urban environments

Lehmann, Jan (2025) Methodology for the optimized localization of charging infrastructure for electric vehicles in urban environments. Masterarbeit, Technische Universität Berlin.

[img] PDF - Nur DLR-intern zugänglich
3MB

Kurzfassung

Transitioning to sustainable mobility is a key strategy in addressing climate change and reducing urban emissions. Battery electric vehicles are rapidly gaining market share, driven by technological advancements, policy incentives, and increasing environmental awareness among consumers. The success of this technology is heavily dependent on the availability of a wellplanned charging infrastructure. There is a research gap in generally applicable methods for planning charging infrastructure. As a consequence, the market penetration of battery electric vehicles could be significantly hindered by inadequate charging networks. To address this challenge, a novel methodology is proposed for the planning of urban charging infrastructure using open-source data. The proposed approach combines a demand-based analysis with geospatial criteria to optimize the placement of future charging points in urban areas. Based on real-world data, the overall number of required charging points is calculated. For each charging point the service area is calculated, which quantifies the demand coverage. Further important criteria are supply of candidate locations, the distribution of demand and the existing charging points. The developed methodology weights all criteria with the TOPSIS multi-criteria decision making algorithm and creates a demand map. This is then used to find the optimal location for new charging points, using a proprietary placement algorithm. As a result, in a case study of Berlin (Germany), more than 82% of the local charging demand could be met. The novel approach provides stakeholders with a solid foundation for charging infrastructure plans, supporting the rapid adoption of battery electric vehicles and meeting future mobility demands.

elib-URL des Eintrags:https://elib.dlr.de/219363/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Methodology for the optimized localization of charging infrastructure for electric vehicles in urban environments
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Lehmann, JanTechnische Universität BerlinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorAnderson, John ErikJohn.Anderson (at) dlr.dehttps://orcid.org/0000-0001-7615-7926
Thesis advisorBergfeld, MoritzMoritz.Bergfeld (at) dlr.dehttps://orcid.org/0000-0002-5843-822X
Thesis advisorPrieto Mota, Alejandroalejandro.prietomota (at) dlr.dehttps://orcid.org/0009-0008-1668-2276
Datum:26 Februar 2025
Open Access:Nein
Seitenanzahl:89
Status:veröffentlicht
Stichwörter:electric vehicles, charging infrastructure, location
Institution:Technische Universität Berlin
Abteilung:Fachgebiet Fahrzeugantriebe
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrssystem
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VS - Verkehrssystem
DLR - Teilgebiet (Projekt, Vorhaben):V - MoDa - Models and Data for Future Mobility_Supporting Services
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Verkehrsforschung > Verkehrsmittel
Hinterlegt von: Anderson, John Erik
Hinterlegt am:02 Dez 2025 12:31
Letzte Änderung:03 Dez 2025 17:06

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.