Bach, Anja und Basermann, Achim und Gerlach, Darius A. und Knechtges, Philipp und Tank, Jens und Terhag, Felix (2025) Sparse Bayesian learning for label efficiency in cardiac real-time MRI. Statistics and Computing, 36 (1), Seite 21. Springer Nature. doi: 10.1007/s11222-025-10772-x. ISSN 0960-3174.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://dx.doi.org/10.1007/s11222-025-10772-x
Kurzfassung
Cardiac real-time magnetic resonance imaging (MRI) is an emerging technology that images the heart at up to 50 frames per second, offering insight into the respiratory effects on the heartbeat. However, this method significantly increases the number of images that must be segmented to derive critical health indicators. Although neural networks perform well on inner slices, predictions on outer slices are often unreliable. This work proposes sparse Bayesian learning (SBL) to predict the ventricular volume on outer slices with minimal manual labeling to address this challenge. The ventricular volume over time is assumed to be dominated by sparse frequencies corresponding to the heart and respiratory rates. Moreover, SBL identifies these sparse frequencies on well-segmented inner slices by optimizing hyperparameters via type-II likelihood, automatically pruning irrelevant components. The identified sparse frequencies guide the selection of outer slice images for labeling, minimizing posterior variance. This work provides performance guarantees for the greedy algorithm. Testing on patient data demonstrates that only a few labeled images are necessary for accurate volume prediction. The labeling procedure effectively avoids selecting inefficient images. Furthermore, the Bayesian approach provides uncertainty estimates, highlighting unreliable predictions (e.g., when choosing suboptimal labels).
| elib-URL des Eintrags: | https://elib.dlr.de/219349/ | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
| Titel: | Sparse Bayesian learning for label efficiency in cardiac real-time MRI | ||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||
| Datum: | 17 November 2025 | ||||||||||||||||||||||||||||
| Erschienen in: | Statistics and Computing | ||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
| Band: | 36 | ||||||||||||||||||||||||||||
| DOI: | 10.1007/s11222-025-10772-x | ||||||||||||||||||||||||||||
| Seitenbereich: | Seite 21 | ||||||||||||||||||||||||||||
| Verlag: | Springer Nature | ||||||||||||||||||||||||||||
| ISSN: | 0960-3174 | ||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||
| Stichwörter: | Sparse Bayesian learning, Label efficiency, Expectation maximization (EM) algorithm, Submodular set functions, Real-time magnetic resonance imaging (MRI) | ||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
| HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Scientific Machine Learning for Space and Material Science Applications [SY] | ||||||||||||||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Softwaretechnologie > High-Performance Computing Institut für Luft- und Raumfahrtmedizin > Kardiovaskuläre Luft- und Raumfahrtmedizin Institut für Softwaretechnologie | ||||||||||||||||||||||||||||
| Hinterlegt von: | Terhag, Felix | ||||||||||||||||||||||||||||
| Hinterlegt am: | 24 Nov 2025 09:28 | ||||||||||||||||||||||||||||
| Letzte Änderung: | 25 Nov 2025 13:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags