elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Post-Earthquake Building Damage Detection using Earth Observation and Machine Learning

Weiß, Helene (2025) Post-Earthquake Building Damage Detection using Earth Observation and Machine Learning. Masterarbeit, Technische Universität München.

[img] PDF - Nur DLR-intern zugänglich
19MB

Kurzfassung

This study introduces a methodology for automating the estimation of building damage levels following the February 2023 earthquakes in southeastern Turkey. The carefully curated dataset consists of very high resolution (VHR) satellite imagery combining pre- and post-event optical and Synthetic Aperture Radar (SAR) data with the corresponding building footprints. The approach utilizes state-of-the-art deep learning for binary and multiclass classification, resulting in a reproducible pipeline for damage assessment. The main goals of this study is to investigate the most suitable fusion technique for the different inputs, the advantage of different backbones and pretrained weights as well as the impact of using pre-event images in comparison to only using post-event data. Furthermore, this study also investigates the ability of the model to distinguish three damage classes by comparing it to binary classification with similar model architecture.

elib-URL des Eintrags:https://elib.dlr.de/219305/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Post-Earthquake Building Damage Detection using Earth Observation and Machine Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Weiß, Helenehelene.weiss (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorKuzu, Ridvan SalihRidvan.Kuzu (at) dlr.dehttps://orcid.org/0000-0002-1816-181X
Datum:2025
Open Access:Nein
Seitenanzahl:63
Status:veröffentlicht
Stichwörter:building damage detection, remote sensing, machine learning, disaster response
Institution:Technische Universität München
Abteilung:TUM School of Computation, Information and Technology
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz, R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Weiß, Helene
Hinterlegt am:26 Nov 2025 11:40
Letzte Änderung:08 Jan 2026 12:07

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.