elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Data-driven sparse coding for onboard condition monitoring of railway tracks

Baasch, Benjamin und Groos, Jörn Christoffer und Heusel, Judith und Noll, Martin-Christopher (2025) Data-driven sparse coding for onboard condition monitoring of railway tracks. Mechanical Systems and Signal Processing (MSSP), 241. Elsevier. doi: 10.1016/j.ymssp.2025.113542. ISSN 0888-3270.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
4MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0888327025012439

Kurzfassung

Continuous monitoring of the rail condition plays an important role in railway maintenance and the planning of noise- and vibration-reducing measures. Rail monitoring can be carried out efficiently using vibro-acoustic measurements with onboard sensors. However, this approach generates large amounts of acoustic and vibration data, which makes real-time transmission, processing and storage a challenge. This paper presents a sparse coding framework applied in the time–frequency domain that aims to overcome these challenges by significantly reducing the amount of data while preserving important information for rail defect detection and diagnosis. The Short-Time Fourier Transform is used as a preprocessing step to transform raw signals into a time–frequency representation, capturing the non-stationary characteristics of the signals. The spectrum at each time window is then represented by a sparse linear combination of basis spectra, which form a dictionary. Online sparse dictionary learning is used to create a data-driven, adaptive representation tailored to the frequency characteristics of vibro-acoustic signals related to rail defects. Experimental data acquired with a microphone and an accelerometer mounted on the wheelset of a tram are used to evaluate the framework. The experimental results show that the framework is able to achieve high compression rates and reduce noise. A reduction in data size of 98% was obtained without loss of relevant information. The proposed approach offers significant advantages for modern railway condition monitoring systems. It is scalable for large amounts of data, energy efficient and suitable for real-time implementation. By reducing data bottlenecks, it enables efficient track monitoring with on-board sensors. This work thus contributes to the development of intelligent and cost-effective solutions for infrastructure management.

elib-URL des Eintrags:https://elib.dlr.de/219065/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:(C) 2025. Licensed under the Creative Commons CC BY license (http://creativecommons.org/licenses/by/4.0/).
Titel:Data-driven sparse coding for onboard condition monitoring of railway tracks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Baasch, BenjaminBenjamin.Baasch (at) dlr.dehttps://orcid.org/0000-0003-1970-3964NICHT SPEZIFIZIERT
Groos, Jörn ChristofferJoern.Groos (at) dlr.dehttps://orcid.org/0000-0003-3871-0756197747744
Heusel, JudithJudith.Heusel (at) dlr.dehttps://orcid.org/0009-0007-7573-6652NICHT SPEZIFIZIERT
Noll, Martin-Christopheri4M technologies GmbHNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:28 Oktober 2025
Erschienen in:Mechanical Systems and Signal Processing (MSSP)
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:241
DOI:10.1016/j.ymssp.2025.113542
Verlag:Elsevier
ISSN:0888-3270
Status:veröffentlicht
Stichwörter:Railway, Noise and vibration, Condition monitoring, Sparse coding, Sparse dictionary learning, Compressed sensing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Schienenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V SC Schienenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - CaRe4Rail - Capacity and Resilience 4 Rail
Standort: Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Digitalisierter Schienenverkehr und -betrieb
Hinterlegt von: Groos, Jörn Christoffer
Hinterlegt am:24 Nov 2025 09:51
Letzte Änderung:01 Dez 2025 10:49

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.