Talies, Jesco und Melching, David und Breitbarth, Eric (2025) Attention-Guided Training; Combining domain priors and explainability methods for improved trustworthiness and performance. WissensAustauschWorkshops - Machine Learning - 11, 2025-10-28 - 2025-10-30, München, Deutschland.
|
PDF
2MB |
Kurzfassung
Ensuring the trustworthiness and robustness of deep learning models remains a fundamental challenge, particularly in high-stakes scientific applications. In this study, we present a framework called attention-guided training that combines explainable artificial intelligence techniques with quantitative evaluation and domain-specific priors to guide model attention. We demonstrate that domain specific feedback on model explanations during training can enhance the model's generalization capabilities. We validate our approach on the task of semantic crack tip segmentation in digital image correlation data which is a key application in the fracture mechanical characterization of materials. By aligning model attention with physically meaningful stress fields, such as those described by Williams´ analytical solution, attention-guided training ensures that the model focuses on physically relevant regions. This finally leads to improved generalization and more faithful explanations.
| elib-URL des Eintrags: | https://elib.dlr.de/219014/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Attention-Guided Training; Combining domain priors and explainability methods for improved trustworthiness and performance | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 29 Oktober 2025 | ||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Explainable AI, XAI, Physics Informed, Deep Learning, Machine Learning, Fracture Mechanics, Crack Tip Segmentation, Crack Tip Field | ||||||||||||||||
| Veranstaltungstitel: | WissensAustauschWorkshops - Machine Learning - 11 | ||||||||||||||||
| Veranstaltungsort: | München, Deutschland | ||||||||||||||||
| Veranstaltungsart: | Workshop | ||||||||||||||||
| Veranstaltungsbeginn: | 28 Oktober 2025 | ||||||||||||||||
| Veranstaltungsende: | 30 Oktober 2025 | ||||||||||||||||
| Veranstalter : | DLR | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||||||
| HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Strukturwerkstoffe und Bauweisen | ||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Werkstoff-Forschung > Experimentelle und numerische Methoden | ||||||||||||||||
| Hinterlegt von: | Talies, Jesco | ||||||||||||||||
| Hinterlegt am: | 19 Nov 2025 11:29 | ||||||||||||||||
| Letzte Änderung: | 19 Nov 2025 11:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags