elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Glacier Area Change Assessment over 2015-2023 in the European Alps with Deep Learning

Diaconu, Codrut-Andrei und Bamber, Jonathan L. und Zekollari, Harry (2025) Glacier Area Change Assessment over 2015-2023 in the European Alps with Deep Learning. General Assembly 2025 of the European Geosciences Union (EGU), 2025-05-03 - 2025-05-08, Vienna, Austria.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Glacier retreat is a key indicator of climate change and requires regular updates of the glacier area. The most recent inventory for the European Alps, released in 2020, showed that glaciers retreated approximately 1.3% per year from 2003 to 2015. This ongoing retreat underscores the urgent need for accurate and efficient monitoring techniques.Recent advancements in Deep Learning have led to significant progress in the development of fully automated glacier mapping techniques. In this work, we use DL4GAM, a multi-modal Deep Learning-based framework for Glacier Area Monitoring, to assess the change in glacier area in the European Alps over 2015-2023. The main data modality used for training is based on Sentinel-2 imagery, combined with additional features derived from a Digital Elevation Model, along with a surface elevation change map, which is particularly useful for debris-covered glaciers. The framework provides an area (change) estimate independently for each glacier, with uncertainties quantified using an ensemble of models. Region-wide, we estimate a retreat of -1.90 ± 0.71%, which is greater than the rate observed during the previous decade. Our estimates also present a significant inter-glacier variability which we analyze with respect to various topographical parameters such as slope, aspect, or elevation.Several challenges persist, including model limitations, data availability issues, and the impact of debris, cloud cover, and seasonal snow. We discuss these challenges, the design choices made to address them, and the remaining open issues.

elib-URL des Eintrags:https://elib.dlr.de/218985/
Dokumentart:Konferenzbeitrag (Poster)
Zusätzliche Informationen:https://ui.adsabs.harvard.edu/link_gateway/2025EGUGA..2715293D/doi:10.5194/egusphere-egu25-15293
Titel:Glacier Area Change Assessment over 2015-2023 in the European Alps with Deep Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Diaconu, Codrut-Andreicodrut-andrei.diaconu (at) dlr.dehttps://orcid.org/0009-0000-1941-0139NICHT SPEZIFIZIERT
Bamber, Jonathan L.j.bamber (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zekollari, HarryNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Machine Learning, Glacier Mass Balance Modelling
Veranstaltungstitel:General Assembly 2025 of the European Geosciences Union (EGU)
Veranstaltungsort:Vienna, Austria
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:3 Mai 2025
Veranstaltungsende:8 Mai 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Diaconu, Codrut-Andrei
Hinterlegt am:20 Nov 2025 09:12
Letzte Änderung:20 Nov 2025 09:12

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.