elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Predicting onflow parameters using transfer learning for domain and task adaptation

YILMAZ, EMRE und Bekemeyer, Philipp (2025) Predicting onflow parameters using transfer learning for domain and task adaptation. Aerospace Science and Technology, 168 (F), Seiten 1-19. Elsevier. doi: 10.1016/j.ast.2025.111161. ISSN 1270-9638.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S1270963825012246

Kurzfassung

Determining onflow parameters is crucial from the perspectives of wind tunnel testing and regular flight and wind turbine operations. These parameters have traditionally been predicted via direct measurements which might lead to challenges in case of sensor faults. Alternatively, a data-driven prediction model based on surface pressure data can be used to determine these parameters, which requires complex system representations including nonlinearities. It is essential that such predictors achieve close to real-time learning as dictated by practical applications such as monitoring wind tunnel operations or learning the variations in aerodynamic performance of aerospace and wind energy systems. To overcome the challenges caused by changes in the data distribution as well as in adapting to a new prediction task, we propose a transfer learning methodology to predict the onflow parameters, specifically angle of attack and onflow speed. It requires first training a convolutional neural network (ConvNet) model offline for the core prediction task, then freezing the weights of this model except the selected layers preceding the output node, and finally executing transfer learning by retraining these layers. A demonstration of this approach is provided using steady CFD analysis data for an airfoil for i) domain adaptation where transfer learning is performed with data from a target domain having different data distribution than the source domain and ii) task adaptation where the prediction task is changed. Further exploration on the influence of noisy data, performance on an extended domain, and trade studies varying sampling sizes and architectures are provided. Results successfully demonstrate the potential of the approach for adaptation to changing data distribution, domain extension, and task update while the application for noisy data is concluded to be not as effective.

elib-URL des Eintrags:https://elib.dlr.de/218647/
Dokumentart:Zeitschriftenbeitrag
Titel:Predicting onflow parameters using transfer learning for domain and task adaptation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
YILMAZ, EMREemre.yilmaz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bekemeyer, PhilippPhilipp.Bekemeyer (at) dlr.dehttps://orcid.org/0009-0001-9888-2499199398797
Datum:2 November 2025
Erschienen in:Aerospace Science and Technology
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:168
DOI:10.1016/j.ast.2025.111161
Seitenbereich:Seiten 1-19
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Kontis, Konstantinoskostas.kontis (at) glasgow.ac.ukNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Cummings, Russell M.U.S. Air Force AcademyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Elsevier
ISSN:1270-9638
Status:veröffentlicht
Stichwörter:Transfer learning, Neural networks, Onflow parameter prediction, Nonlinear systems, Domain adaptation, Task adaptation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Digitale Technologien, E - Windenergie
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > CASE, BS
Hinterlegt von: YILMAZ, EMRE
Hinterlegt am:11 Dez 2025 14:14
Letzte Änderung:15 Dez 2025 15:45

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.