von der Lehr, Fabrice und Griese, Franziska und Rauthmann, Katharina und Knechtges, Philipp (2025) Preconditioned FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems. WAW Machine Learning 11, 2025-10-28 - 2025-10-30, Oberpfaffenhofen. (nicht veröffentlicht)
|
PDF
649kB |
Kurzfassung
As the repeated simulation and optimization of technical systems described by parametric partial differential equations (PDEs) is expensive, we combine neural networks, being known for their good approximation properties, with the classic finite element method (FEM) to obtain a cheap-to-evaluate surrogate model. However, in case of the saddle-point problems arising from the Stokes and Navier-Stokes flows considered in this work, the FEM residual used to train the neural network is highly ill-conditioned and optimizing the model parameters becomes hard. By analogy to the linear case, we propose preconditioning of the loss function and observe improved model accuracy with significantly less training effort, despite the nonlinearity introduced by the neural network. After training, we show the successful application of the FENN to a related inverse problem at moderate Reynolds numbers. Unfortunately, the used preconditioner becomes ineffective at higher Reynolds numbers. We identify the reasons for that, point out the properties a preconditioner should have to be optimal in our setting, and eventually state why it is hard to find such a preconditioner.
| elib-URL des Eintrags: | https://elib.dlr.de/218640/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | Preconditioned FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 2025 | ||||||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| Status: | nicht veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Physics-informed ML, Finite elements, FEM-based neural network, preconditioning, parametric PDEs, Stokes, Navier-Stokes | ||||||||||||||||||||
| Veranstaltungstitel: | WAW Machine Learning 11 | ||||||||||||||||||||
| Veranstaltungsort: | Oberpfaffenhofen | ||||||||||||||||||||
| Veranstaltungsart: | Workshop | ||||||||||||||||||||
| Veranstaltungsbeginn: | 28 Oktober 2025 | ||||||||||||||||||||
| Veranstaltungsende: | 30 Oktober 2025 | ||||||||||||||||||||
| Veranstalter : | DLR | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Synergieprojekt | TIARA | Trustworthy Physics-informed AI for Aerospace and Transportation | ||||||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Softwaretechnologie | ||||||||||||||||||||
| Hinterlegt von: | von der Lehr, Fabrice | ||||||||||||||||||||
| Hinterlegt am: | 24 Nov 2025 10:30 | ||||||||||||||||||||
| Letzte Änderung: | 24 Nov 2025 10:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags