PRECONDITIONED FEM-BASED NEURAL NETWORKS FOR SOLVING INCOMPRESSIBLE FLUID FLOWS AND RELATED INVERSE PROBLEMS

<u>Fabrice von der Lehr</u>, Franziska Griese, Katharina Rauthmann, Philipp Knechtges (SC-HPC, Cologne)

WAW Machine Learning 11

Motivation for Physics-Informed Neural Networks

Mechanistic modelling:

- Numerical simulations of partial differential equations (PDEs)
- Expensive, especially when PDEs have to be solved for several parameters
- Often infeasible in real-time applications / with limited computing capacity

Performant surrogate models needed

Data-driven ML approaches:

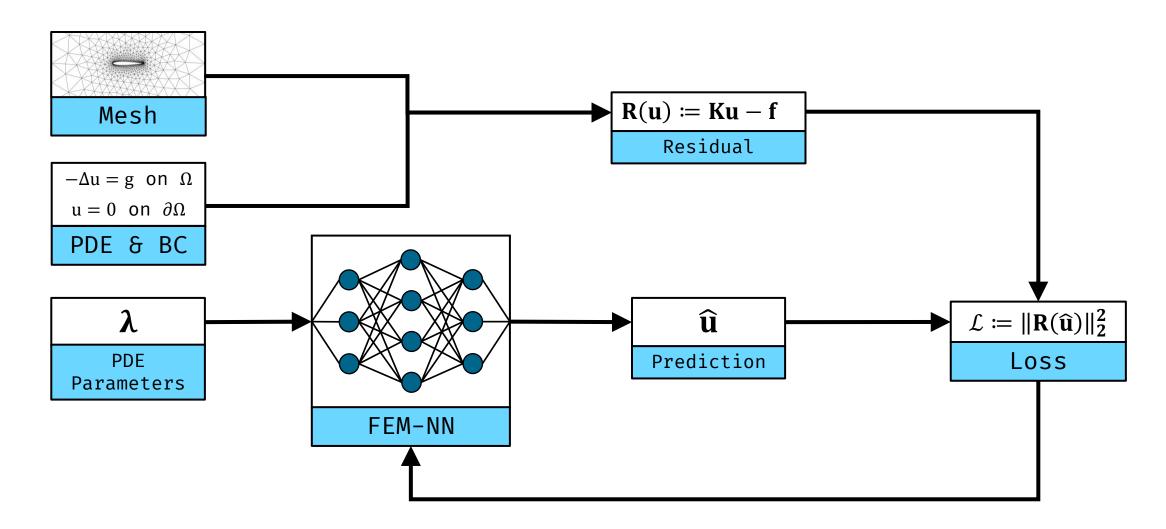
- Trained with data from simulations or real-world measurements
- Physical laws (e.g., conservation of energy) are not / only poorly considered

FEM-based Neural Networks

- Combining finite element method (FEM) with neural networks (NNs)
- Ideal outcome: Uniting strengths of both methods while compensating their weaknesses

FEM	NN
No real-time capacity	© Fast prediction after training
No cost amortization over multiple runs	© Parameterizable
Sound mathematical foundation	Black box model
Numerical theory of errors	Rudimentary convergence theory

FEM-based Neural Networks



Incompressible 2D Navier-Stokes Flow around an Airfoil

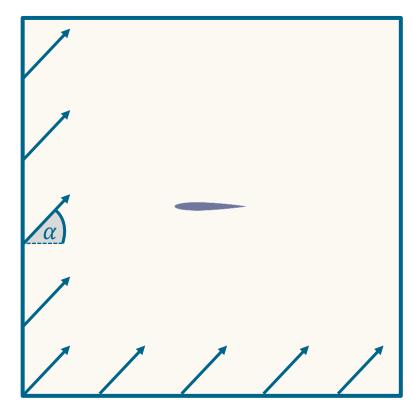
PDE:

$$- \eta \Delta u + \mathbf{u} \cdot \nabla u + \nabla p = 0,$$
$$\nabla \cdot u = 0$$

with viscosity η , velocity u, and pressure p.

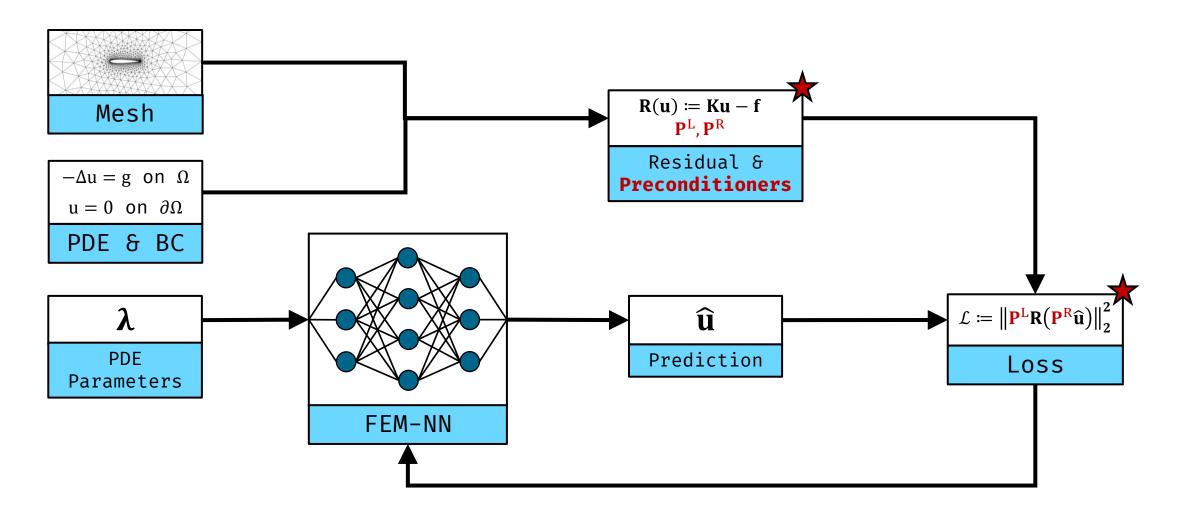
BC: Dirichlet at inflow (dependent on α), Neumann at outflow, no-slip at airfoil.

- Nonlinear saddle point problem
- Even for FEM hard, depending on η



Domain around NACA 0012 airfoil with an angle of attack α .

Preconditioned FEM-based Neural Networks



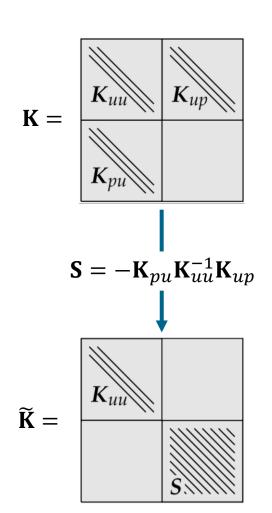
Preconditioning for Stokes and Navier-Stokes Problems

 Saddle point structure of the stiffness matrix K allows for block-diagonal preconditioners featuring the Schur complement

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{uu} & \mathbf{K}_{up} \\ \mathbf{K}_{pu} & \mathbf{0} \end{bmatrix} \rightarrow \mathbf{S} = -\mathbf{K}_{pu} \mathbf{K}_{uu}^{-1} \mathbf{K}_{up}$$

$$\rightarrow \mathbf{P}^{L} \coloneqq \begin{bmatrix} \mathbf{L}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}^{-1} \end{bmatrix}, \quad \mathbf{P}^{R} \coloneqq \begin{bmatrix} \mathbf{L}^{T} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}^{T} \end{bmatrix}$$

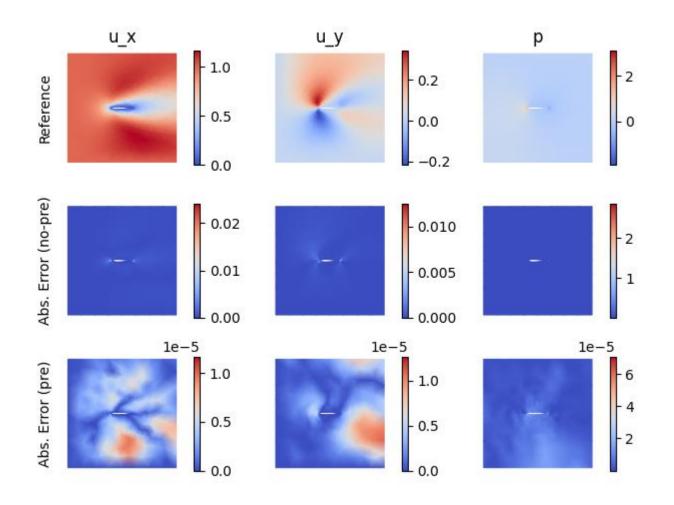
■ Here, $\mathbf{K}_{uu} = \mathbf{L}\mathbf{L}^{\mathrm{T}}$ and $-\mathbf{S} = \mathbf{M}\mathbf{M}^{\mathrm{T}}$ denote Cholesky decompositions, respectively



Results for 2D Navier-Stokes Equations

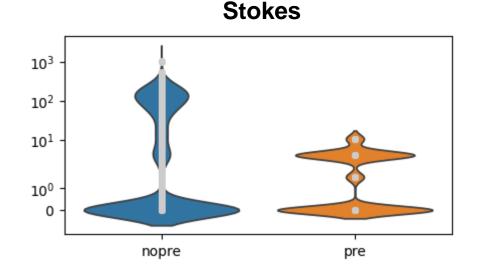
- Training with $\alpha = 1^{\circ}$, $\eta = 0.1$, and 10k iterations (no-pre) / 250 iterations (pre) of L-BFGS
- Training time: 4 min (pre) / 9 min (no-pre)

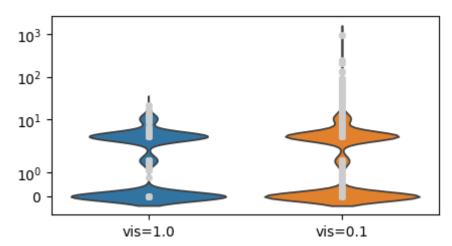
- → Error improvement by>3 orders of magnitude
- → Speedup of x2



Eigenspectra of the Loss Hessian

- Without preconditioning: unclustered eigenspectrum, extending over several orders of magnitude
- With preconditioning: only few clusters at rather small eigenvalues
- → Reduction of the condition number is transferred through the nonlinearity of the NN to its parameter space





Conjugate Gradients (CG) on the Normal Equations

Solving the least-squares problem

$$\min_{\mathbf{u}} \|\mathbf{K}\mathbf{u} - \mathbf{f}\|_2^2$$

using BFGS is equivalent to applying CG to the normal equations

$$\underbrace{\mathbf{K}^T\mathbf{K}\mathbf{u}}_{\widetilde{\mathbf{K}}} = \underbrace{\mathbf{K}^T\mathbf{f}}_{\widetilde{\mathbf{f}}}$$

- It is well known that CG converges more quickly if the eigenspectrum of the system matrix (here: $\widetilde{\mathbf{K}} = \mathbf{K}^T \mathbf{K}$) has few clusters
- This is the case if the singular values of the matrix K are well clustered

Implications for Preconditioning

- Classical preconditioners P are designed to cheaply approximate the inverse K⁻¹ and often guarantee a certain clustering of eigenvalues
- In our case, however, since K is not necessarily symmetric (e.g., Navier-Stokes), its eigenvalues do generally not relate to its singular values; in the worst case, such a near-inverse preconditioner could even spread out the singular values further
- By contrast, an ideal left-preconditioner P^L for the normal equations is a near-orthogonalizer, i.e.,

$$(\mathbf{P}^{\mathbf{L}}\mathbf{K})^{T}(\mathbf{P}^{\mathbf{L}}\mathbf{K}) \approx \mathbf{I},$$

as the singular values of an orthogonal matrix are all equal to 1

Orthogonalizing Preconditioners

LQ decomposition

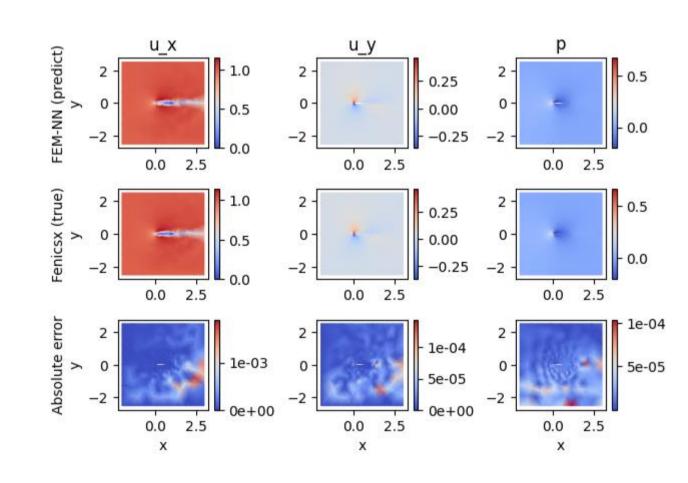
$$LQ = K$$

provides an ideal orthogonalizing left-preconditioner $P^L = L^{-1}$, but is expensive and has to be recomputed in the case of Navier-Stokes due to the nonlinear convection term

- Cheaper incomplete LQ algorithms and data-driven preconditioners have shown to cluster singular values only insufficiently
- Although the set of all orthogonal matrices grows quadratically with the matrix dimensionality, the design of cheaper orthogonalizing preconditioners has proven to be difficult

Results for 2D Navier-Stokes Equations (Low Viscosity)

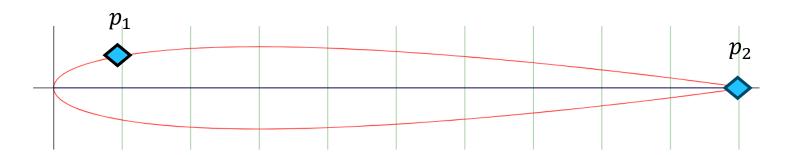
- Continuation Method: In order to compute the preconditioner L to $K(\mathbf{u})$ for a viscosity η_k , we predict \mathbf{u} using a FEM-NN previously trained for viscosity $\eta_{k-1} > \eta_k$
- This iterative training process is started by training w.r.t. the corresponding Stokes problem
- Accurate predictions are possible up to a **Reynolds number of 500** ($\eta = 0.02$, right figure)



Solving an Inverse Navier-Stokes Problem using FEM-NNs

Inverse problem:

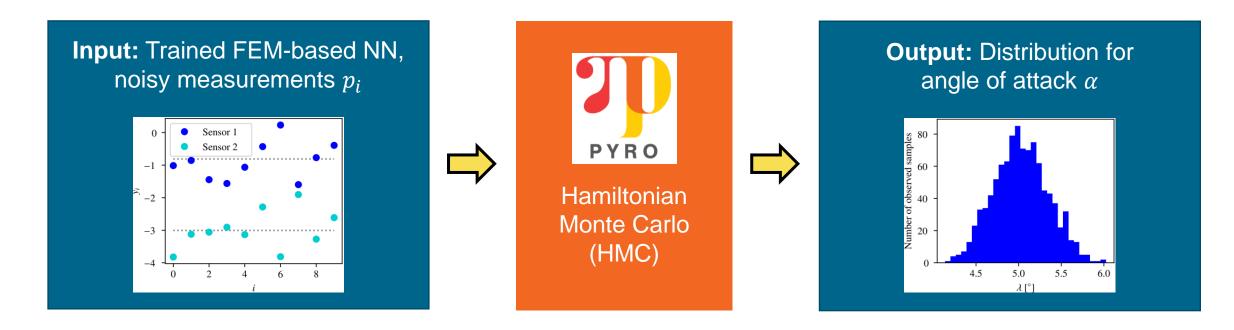
Given noisy pressure measurements p_i at specific locations of the airfoil, infer the angle of attack α .



Solving an Inverse Navier-Stokes Problem using FEM-NNs

Inverse problem:

Given noisy pressure measurements p_i at specific locations of the airfoil, infer the angle of attack α .



Conclusion

- This talk presented FEM-NNs as performant surrogate models to solve incompressible fluid flow problems
- Since efficient preconditioners are absolutely necessary, but difficult to obtain, the method currently only performs well for low to moderate
 Reynolds numbers (10² to 10³)
- The presented results have been created as part of the DLR projects PISA (finished) and TIARA (ongoing)