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Motivation for Physics-Informed Neural Networks ‘#7
DLR

Mechanistic modelling:

= Numerical simulations of partial differential equations (PDES)
» EXpensive, especially when PDEs have to be solved for several parameters
»= Often infeasible in real-time applications / with limited computing capacity

‘ Performant surrogate models needed

Data-driven ML approaches:

= Trained with data from simulations or real-world measurements
= Physical laws (e.g., conservation of energy) are not / only poorly considered
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FEM-based Neural Networks ‘#7
DLR

= Combining finite element method (FEM) with neural networks (NNs)

» |deal outcome: Uniting strengths of both methods while compensating
their weaknesses

FEM

® No real-time capacity Fast prediction after training
@ No cost amortization over multiple runs Parameterizable

© Sound mathematical foundation Black box model

®» ® 6 6

© Numerical theory of errors Rudimentary convergence theory
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FEM-based Neural Networks ‘#7
DLR
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Incompressible 2D Navier-Stokes Flow around an Airfoll ‘#7
DLR

PDE: V
—nAu+u-Vu+Vp = 0,

V-u=20 /

with viscosity n, velocity u, and
pressure p. .ﬁS —

BC: Dirichlet at inflow (dependent | |

on a), Neumann at outflow, no-slip
at airfoll.

U s

Domain around NACA 0012
airfoil with an angle of attack «a.

= Nonlinear saddle point problem
= Even for FEM hard, depending on n
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Preconditioned FEM-based Neural Networks ‘#7
DLR
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Preconditioning for Stokes and Navier-Stokes Problems ‘#7
DLR

= Saddle point structure of the stiffness matrix K allows \
for block-diagonal preconditioners featuring the N\, | Kup

Schur complement K=
K K
K — uu up N S — _K uKuu—lKu |
K,, 0 p p »
S = _KpuKuuKup
— PL:= [L_l 0 . PR .= L' 0 1
0 M1 0 MT \
. K
T T K= N
= Here, K,, =LL" and —S=MM" denote Cholesky \
decompositions, respectively S
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Results for 2D Navier-Stokes Equations

* Training with a« = 1°, n = 0.1,
and 10k iterations (no-pre) /
250 iterations (pre) of L-BFGS
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Eigenspectra of the Loss Hessian A#y
DLR

Stokes

= Without preconditioning: 103 - [

unclustered eigenspectrum, o7 -

extending over several orders ot - 1r

of magnitude . i
= With preconditioning: ] ¢ .

only few clusters at rather nopre pre

small eigenvalues Navier-Stokes

103

— Reduction of the condition 2
number is transferred through ) .
the nonlinearity of the NN to o
its parameter space 100-




Conjugate Gradients (CG) on the Normal Equations ‘#7
DLR

» Solving the least-squares problem

min||Ku — f||5
u

using BFGS is equivalent to applying CG to the normal equations

K'Ku = K'f
—— ——
K f

= |t is well known that CG converges more quickly if the eigenspectrum of
the system matrix (here: K = KTK) has few clusters

* This Is the case if the singular values of the matrix K are well clustered
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Implications for Preconditioning ‘#7
DLR

» Classical preconditioners P are designed to cheaply approximate the
inverse K~! and often guarantee a certain clustering of eigenvalues

* |n our case, however, since K is not necessarily symmetric (e.g., Navier-
Stokes), its eigenvalues do generally not relate to its singular values;
In the worst case, such a near-inverse preconditioner could even spread out
the singular values further

= By contrast, an ideal left-preconditioner P! for the normal equations is a
near-orthogonalizer, i.e.,

(PLK) (PLK) ~ 1,

as the singular values of an orthogonal matrix are all equal to 1
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Orthogonalizing Preconditioners ‘#7
DLR

* LQ decomposition
LQ = K
provides an ideal orthogonalizing left-preconditioner P = L1, but is

expensive and has to be recomputed in the case of Navier-Stokes due to the
nonlinear convection term

» Cheaper incomplete LQ algorithms and data-driven preconditioners
have shown to cluster singular values only insufficiently

= Although the set of all orthogonal matrices grows quadratically with the
matrix dimensionality, the design of cheaper orthogonalizing preconditioners
has proven to be difficult
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Results for 2D Navier-Stokes Equations (Low Viscosity)

= Continuation Method: In order to
compute the preconditioner L to
K(u) for a viscosity n,, we predict
u using a FEM-NN previously
trained for viscosity n,_; > ny

* This iterative training process is
started by training w.r.t. the
corresponding Stokes problem

= Accurate predictions are possible
up to a Reynolds number of 500
(n = 0.02, right figure)
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Solving an Inverse Navier-Stokes Problem using FEM-NNs ‘#7

DLR

Inverse problem:

Given noisy pressure measurements p; at specific locations of the airfoil, infer
the angle of attack «a.
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Solving an Inverse Navier-Stokes Problem using FEM-NNs ‘#7

DLR

Inverse problem:

Given noisy pressure measurements p; at specific locations of the airfoil, infer
the angle of attack «a.

Output: Distribution for

7[ angle of attack «

Input: Trained FEM-based NN,
noisy measurements p;

PYRO

Hamiltonian
Monte Carlo
(HMC)
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Conclusion ‘#7
DLR

» This talk presented FEM-NNs as performant surrogate models to solve
iIncompressible fluid flow problems

» Since efficient preconditioners are absolutely necessary, but difficult to
obtain, the method currently only performs well for low to moderate
Reynolds numbers (104 to 103)

* The presented results have been created as part of the DLR projects PISA
(finished) and TIARA (ongoing)
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