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PRECONDITIONED FEM-BASED NEURAL 
NETWORKS FOR SOLVING
INCOMPRESSIBLE FLUID FLOWS AND 
RELATED INVERSE PROBLEMS
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Motivation for Physics-Informed Neural Networks
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Mechanistic modelling: 

▪ Numerical simulations of partial differential equations (PDEs)

▪ Expensive, especially when PDEs have to be solved for several parameters

▪ Often infeasible in real-time applications / with limited computing capacity

Data-driven ML approaches:

▪ Trained with data from simulations or real-world measurements

▪ Physical laws (e.g., conservation of energy) are not / only poorly considered

Performant surrogate models needed
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FEM-based Neural Networks

▪ Combining finite element method (FEM) with neural networks (NNs)

▪ Ideal outcome: Uniting strengths of both methods while compensating 

their weaknesses
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FEM NN

 No real-time capacity ☺ Fast prediction after training

 No cost amortization over multiple runs ☺ Parameterizable

☺ Sound mathematical foundation  Black box model

☺  Numerical theory of errors    Rudimentary convergence theory
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FEM-based Neural Networks
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Incompressible 2D Navier-Stokes Flow around an Airfoil
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PDE: 

− 𝜂Δ𝑢 + u ⋅ ∇𝑢 + ∇𝑝 = 0,
∇ ⋅ 𝑢 = 0

with viscosity 𝜂, velocity 𝑢, and 

pressure 𝑝.

BC: Dirichlet at inflow (dependent 

on 𝛼), Neumann at outflow, no-slip 

at airfoil.

▪ Nonlinear saddle point problem

▪ Even for FEM hard, depending on 𝜂
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Domain around NACA 0012 

airfoil with an angle of attack 𝛼.

𝛼



Preconditioned FEM-based Neural Networks
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Preconditioning for Stokes and Navier-Stokes Problems
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𝐒 = −𝐊𝑝𝑢𝐊𝑢𝑢
−1𝐊𝑢𝑝

𝐊 =

෩𝐊 =
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▪ Saddle point structure of the stiffness matrix 𝐊 allows 

for block-diagonal preconditioners featuring the 

Schur complement

𝐊 =
𝐊𝑢𝑢 𝐊𝑢𝑝

𝐊𝑝𝑢 𝟎
→      𝐒 = −𝐊𝑝𝑢𝐊𝑢𝑢

−1𝐊𝑢𝑝

→ 𝐏L ≔ 𝐋−1 0
0 𝐌−1 ,   𝐏R ≔ 𝐋T 0

0 𝐌T

▪ Here,   𝐊𝑢𝑢 = 𝐋𝐋T and   −𝐒 = 𝐌𝐌T denote Cholesky 

decompositions, respectively



Results for 2D Navier-Stokes Equations

▪ Training with 𝛼 = 1°, 𝜂 = 0.1,
and 10k iterations (no-pre) / 

250 iterations (pre) of L-BFGS

▪ Training time: 4 min (pre) / 9 

min (no-pre)

→ Error improvement by 

     >3 orders of magnitude

→ Speedup of x2
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Eigenspectra of the Loss Hessian

▪ Without preconditioning: 

unclustered eigenspectrum, 

extending over several orders 

of magnitude

▪ With preconditioning:

only few clusters at rather 

small eigenvalues

→ Reduction of the condition 

number is transferred through 

the nonlinearity of the NN to 

its parameter space
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Stokes

Navier-Stokes



Conjugate Gradients (CG) on the Normal Equations

▪ Solving the least-squares problem

min
𝐮

𝐊𝐮 − 𝐟 𝟐
𝟐

using BFGS is equivalent to applying CG to the normal equations

𝐊𝑇𝐊𝐮 = 𝐊𝑇𝐟

▪ It is well known that CG converges more quickly if the eigenspectrum of 

the system matrix (here: ෩𝐊 = 𝐊𝑇𝐊) has few clusters

▪ This is the case if the singular values of the matrix 𝐊 are well clustered
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෩𝐊 ሚ𝐟



Implications for Preconditioning

▪ Classical preconditioners 𝐏 are designed to cheaply approximate the 

inverse 𝐊−1 and often guarantee a certain clustering of eigenvalues

▪ In our case, however, since 𝐊 is not necessarily symmetric (e.g., Navier-

Stokes), its eigenvalues do generally not relate to its singular values;

in the worst case, such a near-inverse preconditioner could even spread out 

the singular values further

▪ By contrast, an ideal left-preconditioner 𝐏𝐋 for the normal equations is a 

near-orthogonalizer, i.e.,

𝐏𝐋𝐊
𝑇

𝐏𝐋𝐊 ≈ 𝐈,

as the singular values of an orthogonal matrix are all equal to 1
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Orthogonalizing Preconditioners

▪ LQ decomposition

𝐋𝐐 =  𝐊

provides an ideal orthogonalizing left-preconditioner 𝐏𝐋 = 𝐋−1, but is  

expensive and has to be recomputed in the case of Navier-Stokes due to the

nonlinear convection term

▪ Cheaper incomplete LQ algorithms and data-driven preconditioners 

have shown to cluster singular values only insufficiently

▪ Although the set of all orthogonal matrices grows quadratically with the 

matrix dimensionality, the design of cheaper orthogonalizing preconditioners 

has proven to be difficult
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Results for 2D Navier-Stokes Equations (Low Viscosity)

▪ Continuation Method: In order to 

compute the preconditioner 𝐋 to 

𝐊(𝐮) for a viscosity 𝜂𝑘, we predict 

𝐮 using a FEM-NN previously 

trained for viscosity 𝜂𝑘−1 > 𝜂𝑘

▪ This iterative training process is 

started by training w.r.t. the 

corresponding Stokes problem

▪ Accurate predictions are possible 

up to a Reynolds number of 500 

(𝜂 = 0.02, right figure)
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Solving an Inverse Navier-Stokes Problem using FEM-NNs

Inverse problem:

Given noisy pressure measurements 𝑝𝑖 at specific locations of the airfoil, infer 

the angle of attack 𝛼.
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𝑝1

𝑝2
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Output: Distribution for 

angle of attack 𝛼

Solving an Inverse Navier-Stokes Problem using FEM-NNs

Inverse problem:

Given noisy pressure measurements 𝑝𝑖 at specific locations of the airfoil, infer 

the angle of attack 𝛼.
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Input: Trained FEM-based NN,

noisy measurements 𝑝𝑖

Hamiltonian 

Monte Carlo 

(HMC)
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Conclusion

▪ This talk presented FEM-NNs as performant surrogate models to solve 

incompressible fluid flow problems

▪ Since efficient preconditioners are absolutely necessary, but difficult to 

obtain, the method currently only performs well for low to moderate 

Reynolds numbers (102 to 103)

▪ The presented results have been created as part of the DLR projects PISA 

(finished) and TIARA (ongoing)
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