elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

DANI-NET: A Physics-Driven, Explainable Deep Learning Framework for Change Detection using Repeat-Pass InSAR

Costa, Giovanni und Monti Guarnieri, Andrea und Parizzi, Alessandro und Rizzoli, Paola (2025) DANI-NET: A Physics-Driven, Explainable Deep Learning Framework for Change Detection using Repeat-Pass InSAR. IEEE Transactions on Geoscience and Remote Sensing, 63, Seiten 1-27. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2025.3542179. ISSN 0196-2892.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10887317

Kurzfassung

Repeat-pass interferometric SAR (InSAR) is widely used for a variety of application scenarios, such as terrain displacement and subsidence monitoring or measuring the state of infrastructures. In this context, the development of effective algorithms to detect temporal and spatial changes in the radar targets becomes of paramount importance. Typically, state-of-the-art methods only return the spatial, temporal, or both locations of the occurred changes without any information about the causes. In this article, we present a novel change detection method able to infer not only whether a target has changed and when but also the reason why a change is detected, defining the concepts of definitive and temporary changes (TCs). This is done by jointly exploiting four radar amplitude images and the corresponding six interferometric coherences computed at different temporal baselines. To this aim, we propose a new deep learning (DL)-based framework based on a fully convolutional neural network (CNN) called deep analysis for nonstable InSAR targets network (DANI-NET). The network design and training strategy are driven by explainable AI (XAI) principles. Here, we rely on the development of fully synthetic training and testing datasets by following a robust statistical derivation, which allows for a full understanding of the network outcomes. We evaluate the DANI-NET performance on an independent synthetic dataset and we compare it to the state-of-the-art permutational change detection (PCD), a nonparametric statistical approach, achieving extremely competitive results. Moreover, we also provide a feature analysis on the prediction explainability using the SHAP method. Finally, we apply DANI-NET to two real-case scenarios, by considering a Sentinel-1 repeat-pass dataset acquired over Iceland during the 2023-2024 Sundhnúkur eruptions and a TanDEM-X multitemporal stack acquired over an open-pit mining site. We validate the method over the Iceland dataset, where we compare the predicted lava field extension with external reference measurements. In both cases, DANI-NET produces high-quality results and adds the possibility of investigating the nature of the changes caused by either natural or man-induced phenomena.

elib-URL des Eintrags:https://elib.dlr.de/218620/
Dokumentart:Zeitschriftenbeitrag
Titel:DANI-NET: A Physics-Driven, Explainable Deep Learning Framework for Change Detection using Repeat-Pass InSAR
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Costa, Giovannigiovanni.costa (at) polimi.itNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Monti Guarnieri, AndreaPolitecnico di Milano/AresysNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Parizzi, AlessandroTRE AltamiraNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rizzoli, PaolaPaola.Rizzoli (at) dlr.dehttps://orcid.org/0000-0001-9118-2732NICHT SPEZIFIZIERT
Datum:2025
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:63
DOI:10.1109/TGRS.2025.3542179
Seitenbereich:Seiten 1-27
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Block structure, change points, definitive changes (DCs), explainable AI (XAI), interferometric SAR (InSAR), synthetic aperture radar (SAR), temporary changes (TCs)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - AI4SAR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme
Institut für Hochfrequenztechnik und Radarsysteme > Satelliten-SAR-Systeme
Hinterlegt von: Rizzoli, Paola
Hinterlegt am:12 Nov 2025 13:19
Letzte Änderung:14 Nov 2025 13:26

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.