Dumitru, Corneliu Octavian und Karmakar, Chandrabali und Schwarz, Gottfried (2025) Selection of spectral bands for the detection of dedicated semantic classes in satellite disaster images by Latent Dirichlet Allocation. In: Springer Nature Earth and Environmental Science Library. Springer Nature.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
When we want to detect and classify fires in multispectral satellite images (e.g., various types of forest fires and their consequences), we are faced with the prob-lem of how to recognise and interpret the visible fire patterns, and how to dis-criminate fires from smoke and clouds (and other less relevant classes). Current-ly preferred image classification techniques often rely on deep learning (DL) ap-proaches calling for extensive training efforts with lots of training data. Thus, we must apply other techniques if no such data are readily available. In this latter case, we can resort to Latent Dirichlet Allocation (LDA), a dictionary-generated image topic-based classification approach, where no explicit training and learn-ing steps need to be added. Then, the correct assignment of semantic meaning to individual image patches can be accomplished by a priori image knowledge and some off-line image interpretation provided by expert users. In the following, we describe a Latent Dirichlet fire detection and visualisation approach and its per-formance based on an optimised selection of Sentinel-2 satellite spectral image bands. The combination of automated image classification and multi-colour vis-ualisation seems to be an interesting alternative to deep learning. Thus, our paper supports “data to knowledge”.
| elib-URL des Eintrags: | https://elib.dlr.de/218561/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Beitrag in einem Lehr- oder Fachbuch | ||||||||||||||||
| Titel: | Selection of spectral bands for the detection of dedicated semantic classes in satellite disaster images by Latent Dirichlet Allocation | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2025 | ||||||||||||||||
| Erschienen in: | Springer Nature | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Nein | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| Verlag: | Springer Nature | ||||||||||||||||
| Name der Reihe: | Earth and Environmental Science Library | ||||||||||||||||
| Status: | akzeptierter Beitrag | ||||||||||||||||
| Stichwörter: | Sentinel-2, satellite images, band selection, fire detection, semantic classes, topic representations, Latent Dirichlet Allocation (LDA), deep learning | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
| Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||
| Hinterlegt am: | 14 Nov 2025 10:58 | ||||||||||||||||
| Letzte Änderung: | 17 Nov 2025 17:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags