Schuegraf, Philipp und Gui, Shengxi und Qin, Rongjun und Fraundorfer, Friedrich und Bittner, Ksenia (2025) Sat2building: Lod-2 Building Reconstruction from Satellite Imagery Using Spatial Embeddings. Photogrammetric Engineering and Remote Sensing (PE&RS), 91, Seiten 203-210. American Society for Photogrammetry and Remote Sensing. doi: 10.14358/PERS.24-00097R3. ISSN 0099-1112.
|
PDF
- Preprintversion (eingereichte Entwurfsversion)
7MB |
Offizielle URL: https://www.ingentaconnect.com/content/asprs/pers/2025/00000091/00000004/art00009
Kurzfassung
The reconstruction of buildings in level of detail–2, according to the CityGML standard, is an essential feature in applications such as urban planning, environmental simulations, and virtual reality. Existing methods work primarily only on aerial data, depend on an external digital terrain model, or do not accurately separate individual buildings. In this work, we present SAT2BUILDING, a method that predicts roof planes, building sections, and building heights in a single, fully convolutional neural network. The network relies on only orthorectified panchromatic imagery and a photogrammetric digital surface model. The three outputs are jointly processed in a level of detail–2 reconstruction pipeline that generates building models that are seamlessly connected, geometrically accurate and complete, and topologically correct. We use spatial embeddings that enable accurate segmentation of building sections and roof planes from satellite imagery. The model generalizes to data from Bonn, Germany, and Lyon, France, after being trained on data from Berlin, Germany. The training and test data differ in lighting conditions, architectural styles, and ground sampling distances. Thorough comparative evaluation shows the superiority of SAT2BUILDING over three baseline methods.
| elib-URL des Eintrags: | https://elib.dlr.de/218534/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | Sat2building: Lod-2 Building Reconstruction from Satellite Imagery Using Spatial Embeddings | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | April 2025 | ||||||||||||||||||||||||
| Erschienen in: | Photogrammetric Engineering and Remote Sensing (PE&RS) | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| Band: | 91 | ||||||||||||||||||||||||
| DOI: | 10.14358/PERS.24-00097R3 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 203-210 | ||||||||||||||||||||||||
| Verlag: | American Society for Photogrammetry and Remote Sensing | ||||||||||||||||||||||||
| ISSN: | 0099-1112 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Building Reconstruction; LoD2; Satellite Imagery; CityGML; Digital Twin; Deep Learning; Fully Convolutional Neural Network; Data Fusion; AI4BuildingModeling | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | D DAT - Daten | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | D - Digitaler Atlas 2.0, R - Optische Fernerkundung, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
| Hinterlegt von: | Bittner, Ksenia | ||||||||||||||||||||||||
| Hinterlegt am: | 12 Nov 2025 13:29 | ||||||||||||||||||||||||
| Letzte Änderung: | 17 Nov 2025 13:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags