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Abstract

The reconstruction of buildings in level of detail (LoD)-2, according to the CityGML
standard (Kolbe et al., 2005), is an important task in applications like urban plan-
ning, environmental simulations and virtual reality. Yet, existing methods either do
not accurately separate individual buildings, work primarily on aerial data, or depend
on external digital terrain model (DTM). In this work, we present SAT2BUILDING,
a method that predicts roof planes, building sections, and building heights in a sin-
gle fully convolutional neural network (FCN).The network relies on only orthorecti-
fied panchromatic imagery and photogrammetric digital surface model (DSM). The
three outputs are jointly processed in an LoD-2 reconstruction pipeline that generates
seamlessly connected, geometrically accurate and complete, and topologically correct
building models. We use spatial embeddings, which enable accurate segmentation of
building sections and roof planes from satellite imagery. The model generalizes to
data from Bonn, Germany and Lyon, France after being trained on data from Berlin,
Germany. The training and test data differ in lighting conditions, architectural styles
and ground sampling distances (GSDs). Thorough comparative evaluation shows the

superiority of SAT2BUILDING over three baseline methods.
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1. Introduction

The modelling of level of detail (LoD)-2 buildings constitutes an important task in
the field of geospatial and architectural representation. LoD-2 specifically enhances
the geometric complexity of building models beyond basic shapes, incorporating roof
structure, which is essential for applications ranging from urban planning and en-
vironmental simulations to virtual reality. We consider LoD-2 as it is defined by
the CityGML standard (Kolbe et al., 2005). LoD-2 data is often unavailable or of
poor quality and hence profits from methods that can generate high quality building
geometry.

Optical data includes texture information, which makes it easy to distinguish
between various objects above terrain height, such as vegetation and building. Fur-
thermore, it can be used to extract photogrammetric digital surface models (DSMs).
It has been leveraged for LoD-2 reconstruction by Nex and Remondino (2012). Their
method uses hand-crafted features and is suitable to reconstruct low-complexity build-
ings. Arefi and Reinartz (2013) also use hand-crafted features from orthorectified
image and DSM data. Even though it generates more regular buildings, it lacks
robustness to large variations in the input data. Peters et al. (2022) presented an
approach that reconstructs buildings in LoD-2 using building sections and lidar point
clouds. We define a building section as a component of a building with homogeneous
roof type that is visually divisible from the rest of the building. In many cases, this
definition coincides with building adresses. Yet, to reconstruct buildings in LoD-2,
sub-parts of building sections have to be identified. Hence, region growing is used
to create a roof plane (i.e. main planar components) partition of each building sec-

tion and delineate the lines of intersection between the roof planes. In Li and Shan



(2022), LoD-2 buildings are obtained from normalized point clouds by extracting
building primitives and reconstructing them based on a roof type that is determined
using the roof point cloud. This approach leads to symmetric and regular LoD-2
models, but is limited by the library of pre-defined roof types. Furthermore, building
model generation based on point clouds was improved by several works (Gruen and
Wang, 1998; Henricsson, 1998; Gruen, 1998; Sinning-Meister et al., 1996).

Recently, deep learning was introduced to the field of LoD-2 reconstruction. Re-
cently, Alidoost et al. (2019) propose a methodology with two separate neural net-
works for LoD-2 reconstruction from a single aerial image. One of the networks
predict building heights above ground and the other extracts eave-, ridge-, and hip-
lines. On top of that, a model-based approach reconstructs LoD-2 buildings. Another
work that uses deep learning is keypoint inference by segmentation (KIBS) (Lussange
et al., 2023). There, two consecutive Mask-RCNNs (He et al., 2017) are leveraged to
first segment roof planes and subsequently predict roof plane corners accompanied
by their discrete-valued elevation above ground. This approach shows good accuracy,
but it lacks the context of building sections. Both deep learning-based methods above
predict building heights from only image data, which is an ill-posed task.

On the contrary, SAT2LOD2 (Gui and Qin, 2021; Gui et al., 2022) uses pho-
togrammetric DSMs together with satellite imagery to reconstruct buildings in LoD-
2. They use the images to segment building footprints, which are fed to a geometrical
reconstruction pipeline together with the DSM. The reconstruction pipeline uses op-
timization to obtain regularized LoD-2 models, but does not produce accurate roof
geometries. Another limitation is the usage of footprints, which do not allow to re-
construct each building section individually. Gui et al. (2024) overcome this issue by
using building section segmentation and the reconstruction pipeline of SAT2LOD2 to

get a fine-grained LoD-2 building model.



In our previous work (Schuegraf et al., 2024), we presented PLANES4LOD2,
a method which first predicts roof planes and building sections using a single U-
shape neural network and afterwards uses conventional vectorization and LoD-2 re-
construction to obtain geometrically and semantically accurate LoD-2 models from
aerial imagery and photogrammetric DSM. Even though the obtained results are ap-
pealing in the aerial domain, the satellite domain was not explored. Furthermore,
PLANES4LOD2 uses an external digital terrain model (DTM) to normalize building
heights.

Our first main contribution of this work aims on improved instance segmentation.
Since PLANES4LOD2 segments building sections and roof planes based on line fea-
tures, it is prone to incomplete delineations in the case of occluded or low-contrast
object boundaries. On the contrary, Neven et al. (2019) present a method for instance
segmentation that is based on spatial embeddings. Spatial embeddings use 2D direc-
tion vectors, which point to the center of an instance. We use this idea to segment
building sections and roof planes, but add several skip-connections to the respective
decoders and add hierarchical skip-connections (Roggiolani et al., 2023) to allow flow
of information from the building section to the roof plane task. Overall, we leverage
spatial-embedding based instance segmentation in the much more challenging realm
of remote sensing, where objects are tiny and often occluded.

Our second main contribution of this work is to predict building heights, shar-
ing the encoder with the instance segmentation network. Building heights are a
normalized digital surface model (nDSM), but without vegetation. We leverage a
regularization loss, which enforces surface normal consistency of the predicted depth
with the ground truth.

Overall, the contributions of this paper are the following:



e Building section and roof plane segmentation based on spatial embeddings.

e Building height estimation with an encoder that is shared with the instance

segmentation network.

e Experimental evaluation on test areas in Bonn, Germany and Lyon, France with
varying lighting conditions, architectural styles and ground sampling distances

(GSDs).

e Comparative evaluation with three baseline methods for LoD-2 reconstruction.

The remainder of this paper is organized as follows: In Section 2, we describe a new
method for LoD-2 reconstruction in detail and derive the corresponding equations. In
Section 3, we give details about the used datasets, experimental setup and evaluation
procedure. In Section 4, we present results to proof the superiority of our method
in comparison to baseline methods, which we call SAT2BUILDING. In Section 5, we
discuss limitations and possible improvements of the novel SAT2BUILDING method.

Finally, Section 6 concludes this paper.

2. Methods

SAT2BUILDING consists of three stages. First, it segments building sections and
roof planes by a single U-shape fully convolutional neural network (FCN) alongside
LoD-2 building heights from the concatenation of an orthorectified panchromatic
image (PAN) and a patch of a photogrammetric DSM. Second, it vectorizes the
segments. Third, it generates an LoD-2 model based on the vectorized segments and

the building heights.



2.1. Architecture

We utilize ResNet50 (He et al., 2016) as the backbone network (yellow layers
in Figure 1) together with two decoders for the building section task, two decoders
for the roof plane task and one decoder for the building height task (blue layers in
Figure 1). Each of the decoders gradually up-samples the feature map from the last
encoder layer, using higher-resolution features maps from the encoder as guidance
(indicated by green arrows in Figure 1). This helps in combining fine geometrical
details with deep semantic features. Further information is passed from the building
section decoders to the roof plane decoders (red arrows in Figure 1). This helps
in introducing knowledge from the coarse building section segmentation to the finer
roof plane segmentation, which is similarly done for hierarchical plant segmentation
in Roggiolani et al. (2023). In all places where multiple feature maps flow to the
same skip-connection, we use summation to aggregate them, which is more memory

efficient then concatenation.

2.2. Instance Segmentation

We have two instance segmentation sub-tasks, which are building section and
roof plane segmentation. For each of the tasks, our network produces three outputs,
similar to Neven et al. (2019). We formulate the losses only for a single instance
segmentation task, but all losses are computed once for each building section and
roof plane.

The first output is the 2D direction vector o; € R?, pointing to the center of an
instance Sy € {S1, S, ..., Sk}, where k is the cluster index and K is the number of

clusters. A vanilla loss function to guide the training of o; would be

Lonse = Z |o; — 61'”27 (1)
i=1
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Figure 1: The structure of our proposed network architecture. BS and RP are abbreviations for
”building section” and "roof plane”. The yellow and blue rectangles indicate encoder and decoder
layers. ”|” is the concatenation operation, the black arrows show the flow of the input data,
blue arrows show the flow of the final encoder feature map to the decoder, green arrows are skip
connections from the encoder to the decoders, and red arrows are hierarchical skip connections. The
circle diagram is the legend of offset directions in the embedding map. The roof planes in Sigma RP
are longer than the building sections in Sigma BS. Hence, the sections have a reddish color, whereas
the planes have a green tint.

where 0; = Cy, — x; for z; € S;,. C = %erSk x is the centroid of all pixels x
belonging to instance Sk.

However, during inference, we need to determine the centers of the clusters C' =
{C1,Cs, ..., Ck} and assign all pixels = to one of the cluster centers. A common
method to do that is density-based clustering, where the density of the embeddings
e; = x; + 0; is computed and local maxima are selected as cluster centers. Then,
pixels are assigned to the instance with the shortest distance from their corresponding

embedding to the center of the instance. But this includes post-processing, which we
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Figure 2: The process of spatial embedding-based roof plane segmentation. Two decoders output
spatial embeddings, cluster shape parameters sigma and a seed map. These elements are passed to a
simple clustering algorithm. Gaps between instances are closed using the watershed transformation.
The definition of a cluster is closely related to the ground truth (see Figure 5).

want to avoid.
Hence, we use the Lovasz-Hinge loss (Yu and Blaschko, 2015) L, which is a

continuous and differentiable extension of the hinge loss

K
Lhinge = Y Y maz(|le; — Cyl| = 6,0), (2)

k=1 e; €S}

where 0 controls the cluster size. Instead of using a fixed cluster size, we replace

l|e; — Ckll — 6 by 2 X ¢p(e;) — 1, where
¢k(6z) = exp(_tkm X (eix - Ckx)2 - tky X (eiy - Cky)2)7 (3)

and t; = exp(10 x o). Now, the cluster size is parameterized by o = IS_lkl Zaiesk o
and o; is the second output of our network for instance segmentation. Each o; has

two components, o;, for the horizontal and o;, for the vertical direction. This makes



it easier to learn non-square instances. To enforce smoothness of the o;, we use

1 2
*Csmooth = m Z ||JZ - Uk” . (4)

0, €S

During inference, we can get a hint on where pixels belonging to instances are
located by using the seed s; of pixel i, which is the third output of our network. The
seed score indicates how close a pixel is to the center of any instance. This distance
is equivalent to ¢, and should be zero in the background bg. Hence, we use the loss

function

N
1
Lseed = N E H{riesk}HSi - ¢k(€i)|’2 + ﬂ{ziebg}HSi - OHQ’ (5)
i=1

where the gradient of L4 is only computed with respect to s;. The indicator func-
tions 1yz,eq,) and L,y constitute a mask of pixels belonging to any instance Sy
or to the background bg. In the term ||s; — ¢r(e;)||?, k& denotes the number of the
cluster Sy that pixel x; belongs to according to lys,). The final loss function for

both instance segmentation tasks is
Einst = ‘Clh + ‘Csmooth + ‘Cseed- (6)

To obtain instances during inference time (see Figure 2), we sequentially select the
pixels with the highest seed values s; as the cluster centers Cy. We furthermore select

o at those pixels as the sigma value. Then, we assign all pixels ¢ to cluster S}, if
e; € Sy < o¢r(e;) < 0.35. (7)

Note that the value of ¢(e;) is specific to the center Cy of cluster Sy. The threshold

in the implementation of Neven et al. (2019) was 0.5, but we find that the smaller



threshold 0.35 leads to more complete instances in our task. After the assignment of
each cluster, we mask out the pixels assigned to cluster Sy and proceed with the new
highest seed score. If a cluster contains less then 12 pixels, we discard it as noise.
This limit lays far below the 128 pixels used in the original implementation, which
is too high for small instances like roof planes in satellite imagery. The clustering
process proceeds until there are less than 128 pixels which are not yet clustered. This
clustering procedure leaves gaps between adjoining instances open. To solve this issue,
we apply a variant of the watershed transformation (Beucher and Meyer, 2018), that
makes each instance grow inside the limits of the binary building mask, obtained by

thresholding the predicted building heights at 2 m, until it meets another instance.

2.3. Building Height Estimation

To obtain an LoD-2 model, the building height is required. We define the predicted
building height as function f(p) € R at some pixel p € P, where P is the set of all
pixels in an image. This definition implies, that the building height is defined as
a pixel-wise, scalar field, where non-building pixels are set to 0. The function f is
implemented by the shared encoder (yellow, top in Figure 1) and a decoder (right side
in Figure 1). Since the encoder receives not only a DSM, but also a panchromatic
image, the sharpness of the building heights can profit from high quality building edge
information. The decoder consists of stacked feature fusion modules (FFMs) (Patil
et al., 2022), which has a high-resolution feature map from the encoder and a low-
resolution feature map from the previous decoder layer or the bottleneck as inputs.
Bilinear up-sampling brings the low-resolution feature map to the same resolution as
the high-resolution feature map. In parallel, the high-resolution feature map is passed
to a residual block. Consecutively, the sum of the output of the residual block and

the up-sampled feature map is passed to another residual block. The ground truth
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height f (p) serves as the learning target in the mean squared error loss

mse = |P| Z ||f ||2 (8)

peP

To improve regularity of the predicted height, we enforce it to have similar normals

like the ground truth by utilizing the loss

normal |P| Z ||v ,yf x,y.]E(p>H2 (9)

pEP

The final loss for depth estimation is
Edepth - £mse + £normal- (10)

2.4. Vectorization

To reconstruct an LoD-2 model, it is necessary to obtain vectorized roof structure
information. We accomplish this by extracting all border pixels of building sections
and roof planes. The border pixels are considered vertices and are connected by
starting at an initial pixel. From there on, a search finds the closest neighbors among
the vertices iteratively along both paths until a cycle exists. We then refine by utilizing
the douglas peucker polygon simplification algorithm (Douglas and Peucker, 1973).
Hence, we remove pixels that, if excluded, lead to an error of less than 1.0 m with
respect to the initial polygon. In CityGML, the representation of an LoD-2 building
is a collection of 3D roof planes with a single building ID. We assign building ids to
roof planes by selecting the ID of the building section with the highest intersection
over union (IoU) with that roof plane. The approach for vectorization and index

assignment is outlined in Figure 3.
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Figure 3: A visualization of the vectorization and index assignment. Building section ids (numbers)
are assigned to individual roof planes (letters). Since building section ”2” has the higher IoU with
both roof planes ”a” and ”b”, the ID 72" will be assigned to them.

2.5. LoD-2 Reconstruction

As the final step, we use random sample consensus (RANSAC) (Fischler and
Bolles, 1981) for robustly projecting the 2D roofplanes to 3D. To achieve that, we
first consider the scalar building height field. At each pixel that falls inside the area
surrounded by the 2D roofplane, we sample the corresponding height value from the
building heights. In this way, we obtain a set of 3D points. The 3D points are passed
to RANSAC, which estimates plane parameters in a way that is robust to outliers.
We project each 2D vertex of the roof plane polygons to 3D by sampling the plane
at the vertex location. The above vectorization and LoD-2 reconstruction procedure

was originally presented in our previous work (Schuegraf et al., 2024).
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Figure 4: Visualization of the whole Berlin dataset and how it is split into training and validation
areas. The red vertical box contains the validation data, the orange boxes contain the training data.

3. Experiments

3.1. Data

For training and validation, we use a World View-1 panchromatic image and
photogrammetric DSM of Berlin, Germany of size 30733 x 45999 pixels (see Figure 4).
We split the image into five vertical stripes of equal size and use the middle one for
validation and the remaining four for training. As the ground truth for building
sections, roof planes and building height we use public data provided by the senate of
Berlin . In the study area, it contains overall 479,626 building sections with 729,524
roof planes. Some samples of the test area are visualized in Figure 5.

We use two separate datasets for evaluation, one from Bonn, Germany of size
1023 x 896 pixels from Plefades and the other from Lyon, France of size 1387 x 994
pixels from World View-1. For metric computation, we use public ground truth of
both Bonn 2 and Lyon 2 in vector format. The ground truth of Bonn contains 508

building sections with 1,141 roof planes, and that of Lyon 778 building sections with

'https://daten.berlin.de/tags/geodaten
Zhttps://www.opengeodata.nrw.de/produkte/geobasis
Shttps://data.grandlyon.com/
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Figure 5: Parts from our training data in Berlin. PAN abbreviates panchromatic image, BS building
sections, RP roof planes and BH building heights.

2,575 roof planes. In Figure 6, samples from Bonn and Lyon are visualized. In Lyon,
a building section contains on average more than 3 roof planes, which is much higher
than the ratio of ~ 2 in Bonn and ~ 1.5 in Berlin. Looking at the bottom row of
Figure 6, it becomes clear that the ground truth in Lyon contains more details than
the other areas.

During training, we crop patches of size 256 x 256 pixels without overlap. We

do random window shifting of up to 256 pixels in horizontal and vertical direction
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Lyon

Figure 6: Parts from our test data in Bonn (top row) and Lyon (bottom row). RP vec. abbreviates
vectorized roof planes.

to increase the data diversity during training. In the validation phase, patches of
size 256 x 256 pixels are cropped without overlap. While testing, the crop size is
also 256 x 256 pixels and the overlap is 128 pixels horizontally and vertically. The
network predicts per-patch and a large map is created by averaging the patches at
the overlapping areas.

The data from Berlin and Lyon has GSD 0.5m, whereas that of Bonn has GSD
0.7m. Hence, we up-sample the data from Bonn to GSD 0.5m. We generate all
ground truth in GSD 0.5m. During evaluation, we use two kinds of ground truth,
which is raster ground truth of building heights and vector ground truth of roof planes.
The building heights are rasterized LoD-2 models. They contain height values for each
pixel in meters above ground. As opposed to photogrammetric DSM, building heights

do neither contain trees nor terrain information.

3.2. Training Details

We use random initialization of the network parameters and train them using
Adam optimizer (Kingma and Ba, 2017) with learning rate 0.0002, momenta 0.5 and

0.999. The model is trained for 300 epochs and the learning rate is multiplied by 0.1
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after the 100th and 200th epoch. We use batch size 8 and combine the loss functions

from Equations (6) and (10) to the final multi-task loss
Etotal = Einst,bs + Einst,rp + Ldepth- (11>

3.3. Bvaluation Metrics

To quantify the performance of the trained models, we evaluate both the vectorized
roof planes in 2D and the rasterized predicted LoD-2 model in 3D. One commonly
used metric for segmentation is the IoU. Since it doesn’t take into account individual
instances, it is not suitable for roof plane segmentation. On the other hand, the
common objects in context (COCO) metrics are too challenging for tiny objects like

roof planes in satellite imagery. Hence, we provide the new metric

1 .
TV = Ty 2 ToU (). (12)

pep

where p € P is a predicted polygon and p € Pisa ground truth polygon. In 1 oUZ-ngst,
we iterate over the ground truth polygons and select the respective predicted polygon
with the highest IoU. Then, these loUs are averaged.

For the evaluation of the 3D models, we rasterize their height values and use the

root-mean-squared error (RMSE)

A 2
Zi |hi — hi|

MSE =
RMS N ,

(13)

where 7 is a specific pixel, NV is the number of pixels, h; is the ground truth height at

pixel ¢ and h; is the predicted height at pixel ¢. Furthermore, we use mean absolute

16



error (MAE)

hi — hy

MAE = 2] (14)
N

for evaluation. Note that the MAE is less sensitive to outliers than the RMSE. To
gain more insight into the obtained results, we also carry out qualitative inspection

on both the roof plane polygons and the rasterized LoD-2 model.

3.4. Fxperiments

Several experiments are done to show the superiority of SAT2BUILDING over
competing methods. As the reference method, we use PLANES4LOD2 (Schuegraf
et al., 2024), which was originally trained for LoD-2 reconstruction of aerial imagery.
To improve comparability, we re-train PLANES4LOD2 on the same satellite data
of Berlin that we use for SAT2BUILDING. For PLANES4LOD2, we use an exter-
nal DTM together with the DSM to derive building heights instead of predicting
them. The next experiment is the method of Gui et al. (2024) (SAT2LOD2-LineSep).
SAT2LOD2-LineSep requires normalized building height information and building
sections. Since SAT2LOD2 does not have a specification on the source of the build-
ing heights, we use the building height from our proposed method (SAT2BUILDING)
and the building sections from PLANES4LOD2, which are obtained based on the pre-
diction of separation lines between sections. Moreover, we feed the building height
and sections from SAT2BUILDING to the method of Gui et al. (2024) and call that
experiment SAT2LOD2-Embed, because the input building sections are obtained us-
ing spatial embedding-based instance segmentation. Using the building height from
SAT2BUILDING lays the focus on the comparison of using roof planes for LoD-2
reconstruction, since both SAT2LOD2 and SAT2BUILDING use the same building
heights. We compare the above approaches to SAT2BUILDING.

To showcase the effectiveness of using a shared encoder for both instance seg-
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Table 1: Quantitative results of comparison between a single shared, and two separate encoders for
two test areas. 1 indicates that higher values are superior, | indicates that lower values correspond
to higher accuracy.

Test Area Shared Encoder IoU?,+ MAE | RMSE |

st
Bonn 0.300 0.56 m 1.92m
Bonn X 0.323 0.53m 1.83m
Lyon 0.199 1.81lm  5.22m
Lyon X 0.205 1.74m 4.98m

mentation and height estimation, we compare that to a setting with two separate

networks without inter-connection.

4. Results

4.1. Quantitative Results

In this subsection, we analyse the quantitative results of the experimental study.
In Table 1 we can see that it is advantageous to use a shared encoder instead of two
separate networks. The unified network performs better in both instance segmen-
tation and LoD-2 model geometrical accuracy on both test areas, showing that one
encoder can effectively learn features that are more useful for both tasks as compared
to two separate encoders. We attribute this advantage to the regularizing effect of the
multi-task setting. Since both models are trained on data from Berlin that has differ-
ent lighting conditions and architectural styles, the results highlight their capability
to generalize to unseen data.

In Table 2, we observe the quantitative results of SAT2BUILDING with a shared
encoder in comparison to three baseline methods. The comparison between the related
methods SAT2LOD2-SepLine and SAT2L.OD2-Embed shows that instance segmen-

tation based on spatial embeddings is either an equally as good (Bonn) or a better
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Table 2: Comparative results on Bonn and Lyon. 7 indicates that higher values are superior, |
indicates that lower values correspond to higher accuracy.

Test Area NAME IoU%, 1t MAE | RMSE |
Bonn SAT2LOD2-SepLine - 0.89m  2.66m
Bonn SAT2LOD2-Embed - 0.88m  2.67m
Bonn PLANES4LOD?2 0.1826 0.64m  2.14m
Bonn SAT2BUILDING 0.323 0.53m 1.83m
Lyon SAT2LOD2-SepLine - 4.00m  8.60m
Lyon SAT2LOD2-Embed - 3.16m  7.50m
Lyon PLANES4LOD2 0.162 2.66m  6.35m
Lyon SAT2BUILDING 0.205 1.74m 4.98m

(Lyon) basis for the LoD-2 reconstruction using the SAT2LOD2 method. The advan-
tage of spatial embeddings over separation lines becomes particularly clear in Lyon,
where the buildings are densely built. A higher density of buildings and a larger
quantity of buildings with joint borders makes it more critical to discern building
sections. Furthermore, separating buildings based on a thin line is very challenging
in satellite imagery, as compared to aerial imagery with smaller GSDs below 0.3 m.

The comparison between SAT2LOD2-SepLine and PLANES4L.LOD2 shows that
the LoD-2 reconstruction becomes geometrically more accurate if it focuses on recon-
structing roofs based on individual roof planes instead of primitives. PLANES4L.OD2
outperforms SAT2LLOD2-SepLine with a large margin, remarkably in Lyon. The com-
plex building roofs in Lyon make it even more important to accurately reconstruct
each single roof plane.

Comparing PLANES4LOD2 and SAT2BUILDING highlights the advantages of
using spatial embeddings over separation lines for instance segmentation of roof

planes. SAT2BUILDING consistently surpasses PLANES4LOD2 across all metrics
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and in both test areas. This difference in performance, particularly the larger gap in
1 oUngt observed in Lyon compared to Bonn, can be attributed to the GSD of each
area. The GSD in Lyon is smaller than that in Bonn, which has a GSD of 0.7m. A
larger GSD makes it challenging to segment the thin lines that separate adjoining roof
planes, thus reducing the performance of PLANES4LOD2. This happens, because
PLANES4LOD2 uses the separation line to segment roof planes and this separation
line becomes more unclear as the GSD increases. In contrast, SAT2BUILDING,
which segments instances based on spatial embeddings, groups pixels by the center
of each instance. This approach is more robust on larger GSD images, as it does not
rely on clearly visible separation lines, giving SAT2BUILDING an advantage over
PLANES4LOD2 on lower-resolution satellite imagery. Since the IoUY.,, metric is
influenced by the accuracy of roof plane separation, SAT2BUILDING demonstrates
superior performance compared to PLANES4LOD2 on this measure.

Another advantage of SAT2BUILDING is its independence from external DTM
information. The strong performance of SAT2BUILDING is achieved using its own
predicted building height map, whereas PLANES4L.OD2 includes external terrain in-
formation to obtain heights above ground. The improved values of MAE and RMSE
indicate that using the predicted building heights has no negative effect on the per-

formance as compared to using an external DTM.

4.2. Qualitative Results

In Figure 7, it can be seen that SAT2BUILDING generates geometrically accurate
building models at LoD-2. Even under highly challenging conditions like large shad-
ows, high GSDs and complex building structures, SAT2BUILDING correctly identifies
individual roof planes. Nevertheless, in some places, roof planes are misaligned. The

LoD-2 reconstruction pipeline can sometimes estimate incorrect plane parameters, if
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Figure 7: A 3D visualization of the results on our two test sites in Bonn and Lyon.

RANSAC randomly selects an inadequate subset of points on the plane.

As we inspect Figure 8, we see that SAT2BUILDING reconstructs roof more sim-
ilar to the ground truth than all other tested methods in Bonn. In the middle of
the upper sample, the positive effect of the improved instance segmentation leads
to correctly generated gable roofs. PLANES4LOD2 incorrectly generates flat roofs,
which is caused by missing separation lines. SAT2LOD2-Embed and SAT2LOD2-
SepLine produce regularized buildings, but they often do not accurately reflect the
structure of the roof. SAT2LOD2 reconstructs building roofs based on fixed roof
templates, which are often incorrectly inferred in case of complex buildings. Fur-
thermore, SAT2LOD2 does not keep seamless neighboring relations while refining the
boundaries of building sections, which leads to incorrect gaps between them. On the
other hand, SAT2BUILDING and PLANES4LOD2 do not have such a gap because
they refine outlines of adjoining building sections and roof planes jointly. In the lower
example of Figure 8, SAT2BUILDING is the only method that gets the pyramid
shape of the four squared building in the middle correct. Since we use training data
from a public source, which contains many inconsistencies, this can sometimes cause
incorrect predictions.

In Figure 10 we can see that SAT2BUILDING is more accurate than the other
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Figure 8: Visual results of the comparative study from Bonn.
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SAT2BUILDING GT PAN

Figure 9: Detailed visual results of SAT2BUILDING.
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three methods even in highly complex scenarios like the city of Lyon. For exam-
ple, the hipped roof in the middle of the scene is only accurately reconstructed by
SAT2BUILDING. Furthermore, SAT2LOD?2 generates even more incorrect gaps than
in Figure 8.

We take a closer look on several buildings in Figure 9. In the first row, a com-
plex building structure is visualized as reconstructed by our SAT2BUILDING ap-
proach and the corresponding ground truth. While SAT2BUILDING is capable of
reconstructing the overall structure of this building accurately, roof details are not
reconstructed according to the ground truth. Those details are small and are hardly
recognizable in the panchromatic image. Even though in all three detailed examples
the overall structure of the roof is accurately reconstructed, several details are incor-
rect or geometrically distorted. Those errors can be mostly explained by the missing
information (low GSD, shadows) in the panchromatic image. In the third row in Fig-
ure 9, the position where the four roof planes predicted by SAT2BUILDING intersect
is not perfectly central. This position is largely influenced by the estimated plane
parameters, which are based on the predicted building heights. Since the elevation
profile in the building heights depend strongly on the DSM, inaccuracies in the DSM
lead to topological errors in the prediction of SAT2BUILDING.

5. Discussion

Although SAT2BUILDING outperforms the other methods in quantitative evalua-

tion, the metric ToUY!,,

does not exceed 0.323 in Bonn and 0.205 in Lyon. Particularly
the value for Lyon is very low. We can observe in the third column bottom row of
Figure 6, that the roof plane ground truth in Lyon contains many details, that are
very hard to recognize in the panchromatic image (first column) and impossible to

detect in the DSM (second column). On the other hand, SAT2BUILDING extracts
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Figure 10: Visual results of the comparative study from Lyon.

roof plane polygons, representing larger planar structures of building sections. But
the 1 onqfst metric averages [oU scores across ground truth instances, leading to a
low score.

Moreover, Table 2 shows much higher MAE and RMSE in Lyon than in Bonn.
The evaluation of the generated 3D models was done based on rasterized height maps.
Since our test area in Bonn is more sparse, it leads to a lot of background pixels,
which causes better metrics. In Lyon on the other hand, a high building density,
with buildings at various heights, and complex building structures have more room
for error and cause worse 3D metrics.

Furthermore, we want to highlight the importancy of including photogrammet-
ric DSM data as an input to our proposed model. DSM is a substantial hint on
the desired 3D building model. But without the height context of the DSM, our
model would not be able to extract a meaningful building height field. Other than

the DSM, we only present orthorectified panchromatic imagery to the model, which

includes no information about the number of floors of the buildings. One could claim
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that shadow information is present in orthorectified imagery and that shadows imply
height information. But shadow-behavior is dependent on the season and geographic
location.

It is also obvious, that neither SAT2BUILDING nor the comparing methods can
achieve very good accuracy, as some applications might require. We attribute this to
the quality of the satellite imagery in this study, since it was shown in Schuegraf et al.
(2024) that, given higher-resolution aerial imagery with GSD of 0.3, the accuracy
of the resulting LoD-2 models are vastly better. Therefore, LoD-2 reconstruction

requires improved input data, if very high accuracy is demanded.

6. Conclusion

We presented SAT2BUILDING, a novel method for level of detail (LoD)-2 recon-
struction based on the segmentation of main planar roof components. Our method
utilizes deep learning and conventional methods to build a complete 3D reconstruction
workflow, only based on panchromatic satellite imagery and photogrammetric digi-
tal surface model (DSM). Our method predicts normalized building heights, which
makes it independent from external terrain information. SAT2BUILDING leverages
spatial embeddings for robust roof plane segmentation. The resulting LoD-2 model
is geometrically accurate, even when facing difficulties such as high ground sampling
distances (GSDs) of 0.5m to 0.7m, large shadows, densely built areas, and complex
roof structures. We showed how SAT2BUILDING improves in comparison to existing
methods, obtaining considerable performance gains. Furthermore, SAT2BUILDING
generalizes well when evaluated on cities with different lighting conditions, architec-

tural styles, and GSDs then are contained in the training area.
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