Mutreja, Guneet und Bittner, Ksenia (2025) Efficient Building Roof Type Classification: A Domain-Specific Self-Supervised Approach. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Seiten 591-597. Copernicus. ISPRS Geospatial Week (GSW) 2025, 2025-04-06 - 2025-04-11, Dubai, VAE. doi: 10.5194/isprs-annals-X-G-2025-591-202. ISSN 2194-9042.
|
PDF
10MB |
Offizielle URL: https://isprs-annals.copernicus.org/articles/X-G-2025/591/2025/
Kurzfassung
Accurate classification of building roof types from aerial imagery is crucial for various remote sensing applications, including urban planning, disaster management, and infrastructure monitoring. However, this task is often hindered by the limited availability of labeled data for supervised learning approaches. To address this challenge, this paper investigates the effectiveness of selfsupervised learning with EfficientNet architectures, known for their computational efficiency, for building roof type classification. We propose a novel framework that incorporates a Convolutional Block Attention Module (CBAM) to enhance the feature extraction capabilities of EfficientNet. Furthermore, we explore the benefits of pretraining on a domain-specific dataset, the Aerial Image Dataset (AID), compared to ImageNet pretraining. Our experimental results demonstrate the superiority of our approach. Employing Simple Framework for Contrastive Learning of Visual Representations (SimCLR) with EfficientNet-B3 and CBAM achieves a 95.5% accuracy on our validation set, matching the performance of state-of-the-art transformer-based models while utilizing significantly fewer parameters. We also provide a comprehensive evaluation on two challenging test sets, demonstrating the generalization capability of our method. Notably, our findings highlight the effectiveness of domain-specific pretraining, consistently leading to higher accuracy compared to models pretrained on the generic ImageNet dataset. Our work establishes EfficientNetbased self-supervised learning as a computationally efficient and highly effective approach for building roof type classification, particularly beneficial in scenarios with limited labeled data.
| elib-URL des Eintrags: | https://elib.dlr.de/218508/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
| Titel: | Efficient Building Roof Type Classification: A Domain-Specific Self-Supervised Approach | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | 2025 | ||||||||||||
| Erschienen in: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||
| Referierte Publikation: | Ja | ||||||||||||
| Open Access: | Ja | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Ja | ||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||
| DOI: | 10.5194/isprs-annals-X-G-2025-591-202 | ||||||||||||
| Seitenbereich: | Seiten 591-597 | ||||||||||||
| Herausgeber: |
| ||||||||||||
| Verlag: | Copernicus | ||||||||||||
| ISSN: | 2194-9042 | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Building Roof Type Classification, Self-Supervised Learning, EfficientNet, Domain-Specific Pretraining, Aerial Imagery, Remote Sensing, AI4BuildingModeling | ||||||||||||
| Veranstaltungstitel: | ISPRS Geospatial Week (GSW) 2025 | ||||||||||||
| Veranstaltungsort: | Dubai, VAE | ||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||
| Veranstaltungsbeginn: | 6 April 2025 | ||||||||||||
| Veranstaltungsende: | 11 April 2025 | ||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||
| DLR - Schwerpunkt: | Digitalisierung | ||||||||||||
| DLR - Forschungsgebiet: | D DAT - Daten | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | D - Digitaler Atlas 2.0, R - Optische Fernerkundung, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
| Hinterlegt von: | Bittner, Ksenia | ||||||||||||
| Hinterlegt am: | 12 Nov 2025 13:27 | ||||||||||||
| Letzte Änderung: | 17 Nov 2025 12:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags