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ABSTRACT:

This research paper presents a comprehensive evaluation of various self-supervised learning models for building roof type classific-
ation. We conduct linear evaluation experiments for the models pretrained on both the ImageNet1K dataset and a custom building
roof type dataset to assess the models’ performance for the roof type classification task. The results demonstrate the effectiveness
of the ViT-based BEiTV2 model, which outperforms other models on both datasets, achieving an accuracy of 96.8% from the
model pretrained on ImageNet1K dataset and 92.67% on the model pretrained on building roof type dataset. The class activation
maps further validate the strong performance of MoCoV3, BarlowTwins, and DenseCL models. These findings emphasize the
potential of self-supervised learning for accurate building roof type classification, with the ViT-based BEiTV2 model showcasing

state-of-the-art results.

1. INTRODUCTION

In the era of smart cities, the efficient planning of infrastructure,
accurate forecasts, and timely disaster response have become
crucial for sustainable urban development. The emergence of
digital twins, enabled by advancements in 3D modeling, offers
immense potential to support governments in addressing these
challenges. One key element in the reconstruction and mainten-
ance of digital twins is the identification of building roof types.
Unfortunately, in many cases, the existing records maintained
by local governments lack this critical information. This lim-
itation has raised the demand for automated methods utilizing
artificial intelligence (AI) and aerial/satellite imagery to gener-
ate building roof type information.

While supervised models in computer vision have achieved re-
markable success in various tasks, building roof type classific-
ation presents unique challenges due to the scarcity of high-
quality training data. Acquiring labeled data for diverse roof
types at scale is a laborious and costly process. Hence, there
is a need to explore alternative approaches that can leverage
existing data without relying heavily on annotated labels. In
recent years, unsupervised and self-supervised learning tech-
niques ( Larsson et al. (2017), Gidaris et al. (2018), He et al.
(2019), Caron et al. (2021), Zbontar et al. (2021), Saad et al.
(2021)) have gained significant attention in the computer vis-
ion community. These methods eliminate the dependence on
labeled training data and instead focus on leveraging the inher-
ent structure and information present in the data itself. With
recent innovations in this field, self-supervised models have
demonstrated comparable accuracies, and in some cases, even
surpassed their supervised counterparts on well-known classi-
fication benchmarks such as ImageNet and CIFAR-10.

Motivated by the success of self-supervised models and recog-
nizing the importance of building roof type information, we aim
to investigate the application of different convolutional and vis-
ion transformer-based self-supervised algorithms for the down-
stream task of building roof type classification. By exploiting
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Figure 1. An example of roof forms from each of the four
classes.

the intrinsic patterns and relationships within the unlabeled aer-
ial/satellite imagery data, we seek to develop an effective and
efficient approach for automatically identifying and classifying
building roof types.

In this paper, we present our comprehensive evaluation of vari-
ous self-supervised learning techniques and their effectiveness
in addressing the challenge of building roof type classification.
We conduct extensive experiments, compare the performance of
different models. Through our research, we aim to advance the
state-of-the-art in automated building roof type classification,
facilitating the development of smarter cities with improved in-
frastructure planning, accurate forecasts, and enhanced disaster
response capabilities.
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Figure 2. Predictions and class activation maps for different ResNet50 based architectures pretrained on ImageNetlk dataset,
encompassing cross-hipped, flat, gable and hip roof types (left to right).

2. RELATED WORK
2.1 Self-Supervised Learning

Self-supervised learning has emerged as a promising approach
to leverage unlabeled data for representation learning in com-
puter vision tasks. In recent years, contrastive learning-based
models have gained significant popularity, outperforming non-
contrastive methods. Following the pivotal work of van den
Oord et al. (2018) on contrastive predictive coding (CPC), sev-
eral notable self-supervised algorithms have been proposed.
Early approaches focused on tasks such as image inpainting and
colorization to learn meaningful representations. Pathak et al.
(2016) introduced Context Encoders, which leveraged the re-
construction of missing image regions for representation learn-
ing. Similarly, Zhang et al. (2016) proposed colorization as a
pretext task for learning image representations.

Another line of research explored instance discrimination,
where models are trained to differentiate between instances
of the same object class. This idea was popularized by He
et al. (2020) with the introduction of the MoCo framework.
The MoCo approach utilized a contrastive loss to learn dis-
criminative representations by contrasting positive and negat-
ive pairs of instances. Further advancements in self-supervised
learning led to the development of Chen et al. (2020a). Sim-
CLR introduced a contrastive learning framework that max-

imized agreement between differently augmented views of the
same image. It achieved state-of-the-art performance on sev-
eral benchmark datasets and demonstrated the efficacy of con-
trastive learning on large-scale datasets. Building upon Sim-
CLR, the BYOL (Bring Your Own Latent) framework pro-
posed by Grill et al. (2020) eliminated the need for negative
samples during training. BYOL achieved competitive results
and showcased the potential of self-supervised learning without
contrastive negative pairs. Recent advancements have extended
self-supervised learning beyond convolutional architectures to
transformer-based models. Notably, the BeiT (BERT-like En-
coder with Transformer) framework proposed by Bao et al.
(2021) demonstrated the effectiveness of self-supervised learn-
ing for vision transformers. BeiT achieved remarkable perform-
ance on ImageNet, surpassing previous state-of-the-art models.

While the above-mentioned algorithms represent a subset of the
extensive research in self-supervised learning, they highlight
the evolution and success of different approaches. In our study,
we draw inspiration from these models to explore their applic-
ability in the specific task of building roof type classification.

2.2 Building Roof Type Classification

Building roof type classification plays a vital role in the recon-
struction and maintenance of digital twins for smart cities. Pre-
vious works like in Alidoost Fatemeh (2018), Buyukdemircio-
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Figure 3. Predictions of different ViT based architectures pretrained on ImageNet1K dataset, encompassing cross-hipped, flat, gable
and hip roof types (left to right).

glu et al. (2021), and Wang et al. (2022) focused on utiliz-
ing Convolutional Neural Networks (CNNs) for detection and
recognition of roof shapes using labeled training data. These
methods demonstrated effectiveness with high-quality rates in
detection and recognition. However, the reliance on limited
and high-quality training data, as well as challenges in accur-
ate segmentation, remained as notable limitations. While Saad
et al. (2021)’s work investigated the application of contrastive
learning methods like SimCLR and BYOL to mitigate the chal-
lenge of limited labeled training data, it is important to consider
the potential of more accurate self-supervised convolutional and
vision transformer-based algorithms for this task. The advance-
ments in self-supervised techniques offer an opportunity to im-
prove the performance of building roof type classification, and
thus, it becomes essential to evaluate their effectiveness in this
context.

3. METHODOLOGY
3.1 Pretraining

Pretraining serves as a crucial step in self-supervised learn-
ing to learn effective representations from unlabeled data. In
our study, we adopted pretrained backbone weights on the Im-
ageNet1K dataset for multiple ResNet (He et al., 2015) and ViT-
based (Dosovitskiy et al., 2020) self-supervised models. These

pretrained models were chosen due to their demonstrated ef-
fectiveness in capturing high-level visual features.

By utilizing pretrained weights, we aim to leverage the general-
ization capabilities of these models and evaluate their effective-
ness on aerial imagery and building roof type classification. The
pretrained models provide a strong initial feature extractor, en-
abling us to transfer knowledge from the large-scale ImageNet
dataset to our specific task.

3.2 Linear Evaluation

The linear evaluation phase focuses on training a linear classi-
fier on top of the pretrained backbone weights, allowing us to
assess the models’ performance specifically for building roof
type classification. During the linear evaluation, we froze the
weights of the pretrained backbone and trained only the linear
classifier head. This approach allowed us to fine-tune the classi-
fier specifically for the task of building roof type classification,
while keeping the learned features from the pretrained models
intact. The linear evaluation enabled us to assess the effect-
iveness of the pretrained models in differentiating between the
main roof types: Gable, Hip, Flat, and Cross-Hipped.

In the following sections, we present the experimental setup,
including details on the dataset, model architectures, training
procedures, and evaluation metrics. By combining the power



Sway = 2
® Y

SimCLR ” %‘
.. % ¥

MoCoV2 2y g‘
i, & ¥

MoCoV3 T %
I, k¥

DenseCL %

' a

:

&

e
-

Sl

Figure 4. Predictions and class activation maps for different ResNet50 based architectures pretrained on Building roof type dataset,
encompassing cross-hipped, flat, gable and hip roof types (left to right).

of pretraining and linear evaluation, our methodology seeks to
provide insights into the effectiveness of self-supervised learn-
ing models for building roof type classification.

4. EXPERIMENTS
4.1 Dataset

For our experiments, we conducted linear evaluation using
building roof vectorization dataset published by Hensel et al.
(2021). However, the dataset lacked roof type information.
Therefore, we manually assigned labels to images, categoriz-
ing them into four distinct roof type classes: Gable, Hip, Flat,
and Cross-Hipped. To provide a visual representation, Figure 1
showcases an example image for each of these four classes. To
maintain consistency, we preserved the original train-test split
provided in the dataset. This resulted in a training set compris-
ing approximately 7500 images and a validation set containing
765 images.

4.2 Implementation Details

In our research, we conducted linear evaluation experiments
on various self-supervised algorithms. Specifically, we evalu-
ated SImCLR (Chen et al., 2020a), SWAV (Caron et al., 2020),
MoCoV2 ( Chen et al. (2020b), MoCoV3 (Chen et al., 2021),

DenseCL (Wang et al., 2020), BYOL (Grill et al., 2020), Bar-
lowTwins (Zbontar et al., 2021) with ResNet50, and BEiT (Bao
et al., 2021), BEiTV2 (Peng et al., 2022), and MAE (He et al.,
2021) with Vision Transformers as backbones.

We performed two sets of experiments. Firstly, we trained a
linear classifier directly on the frozen weights of the pretrained
models, which were pretrained on the ImageNetlk dataset. In
the second experiment, we pretrained the backbone weights
from scratch on the building dataset without labels for 300
epochs. Subsequently, we trained a linear classifier in a super-
vised fashion using the frozen weights for 90 epochs.

During the linear evaluation, we applied random resize crops
and horizontal flips as data augmentation techniques. We eval-
uated the accuracy using a central crop for all models. For
SimCLR, SwAYV, BYOL, MoCoV3 (ResNet-based), and Bar-
lowTwins, we utilized the LARS optimizer (You et al., 2017)
with a learning rate of 0.6 and a momentum of 0.9. We gradu-
ally decreased the learning rate using a cosine schedule that
started from the first epoch and continued for all 90 epochs.
For MoCoV2 and DenseCL, we employed Stochastic Gradi-
ent Descent (SGD) as the optimizer with a learning rate of 0.1,
momentum of 0.9, and weight decay of le — 4. We decayed
the learning rate by a factor of 0.1 with milestones at 60 and
80 epochs using a multi-step strategy. For BEiT, BEiTV2, and
MAE, we used the AdamW optimizer with a weight decay of
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Figure 5. Predictions of different ViT based architectures pretrained on Buildings roof type dataset, encompassing cross-hipped, flat,
gable and hip roof types (left to right).

0.05. The initial learning rate was determined using a linear
scaling rule, where Ir was le — 3, gradually increasing it during
the first 20 epochs. We decayed the learning rate using a cosine
schedule.

During the pretraining phase, we applied data augmentation
techniques as prescribed in the original papers. For SimCLR,
SwAV, BYOL, MoCoV3 (ResNet-based), and BarlowTwins,
we utilized the LARS optimizer with a linear scaling rule to
determine the initial learning rate, gradually increasing it dur-
ing the first 10 epochs. We decayed the learning rate using a
cosine schedule and applied a weight decay of 1e — 6. For Mo-
CoV2 and DenseCL, we employed Stochastic Gradient Descent
(SGD) as the optimizer with a learning rate of 0.03, momentum
of 0.9, and weight decay of le — 4. We gradually decreased
the learning rate using a cosine schedule. For BEiT, BEiTV2,
and MAE, we used the AdamW optimizer with a weight de-
cay of 0.1. The initial learning rate was set to le — 4, with a
warmup of 40 epochs. We decayed the learning rate using a
cosine schedule. All models were pretrained for 300 epochs to
capture rich and meaningful representations from the unlabeled
building dataset.

5. RESULTS AND DISCUSSION

In this section, we present the results and discussion from our
experiments, comparing the performance of the mentioned self-

supervised learning models for the task of building roof type
classification.

Linear evaluation results for models pretrained on Im-
ageNetlk dataset. We performed a linear evaluation for all the
mentioned self-supervised learning models pretrained on the
ImageNet1K dataset. First column in Table 1 summarizes the
accuracy results obtained from this evaluation. Among these
models, the ViT-based model BEiTV2 demonstrated superior
performance, achieving an accuracy of 96.8%. This indic-
ates the effectiveness of Vision Transformers for building roof
type classification. Other notable performers include ResNet50
based MoCoV3, DenseCL, and BarlowTwins, which achieved
accuracy scores exceeding 95%. The class activation maps in
Figure 2 provide visual evidence supporting the performance of
MoCoV3, BarlowTwins, and DenseCL. These maps highlight
the model’s ability to focus on relevant image regions associ-
ated with specific roof types, reinforcing their accuracy and ro-
bustness.

Linear evaluation results for models pretrained on build-
ings roof type dataset. Next, we conducted a linear evalu-
ation on the models pretrained without labels using the build-
ing roof types dataset. Second column in Table 1 summarizes
the accuracy results obtained from this evaluation. In this eval-
uation scenario, the BEiT model achieved the highest accuracy
of 96%, closely followed by MoCoV3 ViT with an accuracy of



Model Results Im- | Results Build-
ageNetlk ing dataset pre-
pretrained trained

SimCLR 80.78 87.98

SwAV 87.9 86.5

MoCoV2 71.63 85.62

MoCoV3 (ResNet50) | 95.8 86.2

MoCoV3 (ViT) 92.9 92.4

DenseCL 94.1 83.2

BYOL 92.1 84.05

BEit 96.4 95.94

BEitV2 96.8 92.67

BarlowTwins 95.03 59.3

MAE 77.1 88.4

Table 1. Linear evaluation results from different ResNet50 and
ViT based self-supervised models pretrained on ImageNetlk and
Building roof type datasets.

92.41%. These results demonstrate the robustness and transfer-
ability of these models to the specific task of building roof type
classification. However, it is worth noting that some models,
such as BarlowTwins, exhibited lower accuracy in this evalu-
ation.

To provide further insights into the performance of these mod-
els, we showcase predictions from these models for one im-
age each from the four different roof classes in the validation
dataset and also the class activation maps in Figure 2 to Fig-
ure 5, which offer visual explanations of the model’s attention
to specific regions. These visualizations will provide additional
evidence of the models’ ability to capture meaningful features
related to building roof types.

In summary, our experiments demonstrate the effectiveness of
self-supervised learning models for building roof type clas-
sification. The ViT-based model BEiTV2, along with other
high-performing models such as MoCoV3, DenseCL, and Bar-
lowTwins, showcase the potential of self-supervised learning
for capturing meaningful representations. The class activation
maps and the accuracy results further support the efficacy of
these models in accurately classifying building roof types.

6. CONCLUSION

In this study, we investigated the effectiveness of various self-
supervised learning models for building roof type classification.
Through extensive experiments and evaluations, we obtained
insightful results that contribute to the understanding and ad-
vancement of self-supervised learning in computer vision tasks.

Our findings highlight the potential of self-supervised learning
models for building roof type classification and demonstrate the
efficacy of Vision Transformers in this task. The results also
emphasize the importance of leveraging large-scale unlabeled
datasets and transferring learned representations to achieve high
accuracy in real-world applications. The performance of vari-
ous models, coupled with visual evidence from class activation
maps, reinforces the importance of leveraging self-supervised
learning algorithms and their ability to capture meaningful fea-
tures. These results contribute to advancing computer vision re-
search in building reconstruction and provide valuable insights
for intelligent infrastructure planning in smart cities.
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