Vinge, Rikard und Byttner, Stefan und Lundström, Jens (2025) Expanding Polynomial Kernels for Global and Local Explanations of Support Vector Machines. DLR WAW Machine Learning 11, 2025-10-28 - 2025-10-30, München, Deutschland.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Researchers and practitioners of machine learning nowadays rarely overlook the potential of using explainable AI methods to understand models and their predictions. These explainable AI methods mainly focus on the importance of individual input features. However, as important as the input features themselves, are the interactions between them. Methods such as the model-agnostic but computationally expensive Friedman's H-statistic and SHAP investigate and estimate the impact of interactions between the features. Due to computational constraints, the investigation is often limited to second-order interactions. In this paper, we present a novel, model-specific method to explain the impact of feature interactions in SVM classifiers with polynomial kernels. The method is computationally frugal and calculates the interaction importance exactly for any order of interaction. Explainability is achieved by mathematical transformation to a linear model with full fidelity to the original model. Further, we show how the model provides for both global and local explanations, and facilitates post-hoc feature selection. We demonstrate the method on two datasets; one is an artificial dataset where H-statistics requires extra care to provide useful interpretation; and one on the real-world scenario of the Wisconsin Breast Cancer dataset. Our experiments show that the method provides reasonable, easy to interpret and fast to compute explanations of the trained model.
| elib-URL des Eintrags: | https://elib.dlr.de/218413/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Expanding Polynomial Kernels for Global and Local Explanations of Support Vector Machines | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2025 | ||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||
| Open Access: | Nein | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Explainable AI, Support Vector Machine, xAI | ||||||||||||||||
| Veranstaltungstitel: | DLR WAW Machine Learning 11 | ||||||||||||||||
| Veranstaltungsort: | München, Deutschland | ||||||||||||||||
| Veranstaltungsart: | Workshop | ||||||||||||||||
| Veranstaltungsbeginn: | 28 Oktober 2025 | ||||||||||||||||
| Veranstaltungsende: | 30 Oktober 2025 | ||||||||||||||||
| Veranstalter : | German Aerospace Center (DLR) | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
| Hinterlegt von: | Vinge, Rikard | ||||||||||||||||
| Hinterlegt am: | 19 Nov 2025 13:16 | ||||||||||||||||
| Letzte Änderung: | 19 Nov 2025 13:16 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags