Schnupfhagn, Christoph und Yang, Yi-Jie (2025) Automated Deep-Learning Based Oil Spill Detection in the North Sea from Spaceborne SAR. WAW Machine Learning 11, 2025-10-28 - 2025-10-30, Oberpfaffenhofen, Germany.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Oil pollution in the North Sea is mainly caused by shipping activities and offshore oil production. Oil leaks and discharges from offshore platforms, pipelines and ships result in surface films that threaten sensitive marine and coastal ecosystems such as the Wadden Sea. Spaceborne Synthetic Aperture Radar (SAR) sensors are widely used to continuously monitor accidental and deliberate oil spills in this large area. However, the reliable discrimination of oil spills and other oceanic and atmospheric phenomena remains challenging. Here, we present an automated system for oil spill detection from Sentinel-1 imagery based on deep learning, which was trained and validated using manually labelled image patches from the North Sea covering all seasons. Detections from the YOLOv4 object detector are post-processed using machine learning to reduce false detections while maintaining sensitivity. Each detected oil spill is segmented to determine the actual extent of the polluted area. With its potential for operational use, our oil spill monitoring could inform decision-making and support an early response to mitigate pollution.
| elib-URL des Eintrags: | https://elib.dlr.de/218299/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
| Titel: | Automated Deep-Learning Based Oil Spill Detection in the North Sea from Spaceborne SAR | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | 28 Oktober 2025 | ||||||||||||
| Referierte Publikation: | Nein | ||||||||||||
| Open Access: | Nein | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Nein | ||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Oceanography, SAR, oil pollution, North Sea, NRT, deep learning | ||||||||||||
| Veranstaltungstitel: | WAW Machine Learning 11 | ||||||||||||
| Veranstaltungsort: | Oberpfaffenhofen, Germany | ||||||||||||
| Veranstaltungsart: | Workshop | ||||||||||||
| Veranstaltungsbeginn: | 28 Oktober 2025 | ||||||||||||
| Veranstaltungsende: | 30 Oktober 2025 | ||||||||||||
| Veranstalter : | DLR: Data Science Department of the Remote Sensing Technology Institute, the Perception and Cognition Department of the Institute of Robotics and Mechatronics & SAR-Technology Department of the Microwaves and Radar Institute | ||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||||||
| Standort: | Bremen , Oberpfaffenhofen | ||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||
| Hinterlegt von: | Kaps, Ruth | ||||||||||||
| Hinterlegt am: | 06 Nov 2025 12:56 | ||||||||||||
| Letzte Änderung: | 06 Nov 2025 12:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags