elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Automated Deep-Learning Based Oil Spill Detection in the North Sea from Spaceborne SAR

Schnupfhagn, Christoph und Yang, Yi-Jie (2025) Automated Deep-Learning Based Oil Spill Detection in the North Sea from Spaceborne SAR. WAW Machine Learning 11, 2025-10-28 - 2025-10-30, Oberpfaffenhofen, Germany.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Oil pollution in the North Sea is mainly caused by shipping activities and offshore oil production. Oil leaks and discharges from offshore platforms, pipelines and ships result in surface films that threaten sensitive marine and coastal ecosystems such as the Wadden Sea. Spaceborne Synthetic Aperture Radar (SAR) sensors are widely used to continuously monitor accidental and deliberate oil spills in this large area. However, the reliable discrimination of oil spills and other oceanic and atmospheric phenomena remains challenging. Here, we present an automated system for oil spill detection from Sentinel-1 imagery based on deep learning, which was trained and validated using manually labelled image patches from the North Sea covering all seasons. Detections from the YOLOv4 object detector are post-processed using machine learning to reduce false detections while maintaining sensitivity. Each detected oil spill is segmented to determine the actual extent of the polluted area. With its potential for operational use, our oil spill monitoring could inform decision-making and support an early response to mitigate pollution.

elib-URL des Eintrags:https://elib.dlr.de/218299/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Automated Deep-Learning Based Oil Spill Detection in the North Sea from Spaceborne SAR
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schnupfhagn, Christophchristoph.schnupfhagn (at) dlr.dehttps://orcid.org/0009-0009-3660-9727NICHT SPEZIFIZIERT
Yang, Yi-JieYi-Jie.Yang (at) dlr.dehttps://orcid.org/0000-0002-4098-8119NICHT SPEZIFIZIERT
Datum:28 Oktober 2025
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Oceanography, SAR, oil pollution, North Sea, NRT, deep learning
Veranstaltungstitel:WAW Machine Learning 11
Veranstaltungsort:Oberpfaffenhofen, Germany
Veranstaltungsart:Workshop
Veranstaltungsbeginn:28 Oktober 2025
Veranstaltungsende:30 Oktober 2025
Veranstalter :DLR: Data Science Department of the Remote Sensing Technology Institute, the Perception and Cognition Department of the Institute of Robotics and Mechatronics & SAR-Technology Department of the Microwaves and Radar Institute
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - SAR-Methoden
Standort: Bremen , Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung
Hinterlegt von: Kaps, Ruth
Hinterlegt am:06 Nov 2025 12:56
Letzte Änderung:06 Nov 2025 12:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.