elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

A roadmap to Quantum Computational Fluid Dynamics

Langer, Stefan und Görtz, Stefan (2025) A roadmap to Quantum Computational Fluid Dynamics. In: Applied Quantum Methods in Computational Science and Engineering – AQMCSE 2025. Applied Quantum Methods in Computational Science and Engineering – AQMCSE 2025, 2025-10-08 - 2025-10-10, Aachen, Germany.

[img] PDF
392kB
[img] PDF
1MB

Kurzfassung

The accurate simulation of turbulent compressible fluids is a major computational challenge for the aviation industry and possibly a key technology for improving the efficiency of future aircraft so that the ambitious climate targets can be achieved. Even though great progress has been made in the field of CFD in recent decades, and simulation software is available to a wide range of users from both commercial providers and research institutes, it still has two major shortcomings: a) The accuracy of the results is usually limited by the quality of the turbulence models. Even very advanced turbulence models such as Reynolds-Stress models are not able to accurately reproduce a wide range of flows, in particular at the border of the flight envelope. For unseen test cases involving complex physical phenomena or unconventional aircraft configurations, selecting an appropriate turbulence model is often challenging and not straightforward. b) In order to overcome the shortcomings resulting from turbulence modeling, scale-resolving methods such as large eddy simulations or even direct numerical simulations are increasingly being carried out. However, the cost of these simulations for flight Reynolds numbers is so high that even under very optimistic assumptions about the development of future HPC resources and advances in algorithms, full-aircraft simulations seem unrealistic. Even though the possibilities for the use of quantum computers in CFD are still limited due to their current stage of development, they may offer the potential to accelerate calculations in such a way that scale-resolving methods for complete aircraft seem possible. Since algorithms that can be efficiently implemented on quantum computers for solving compressible nonlinear transport equations are also largely not yet available, the time is now to deal with them.

elib-URL des Eintrags:https://elib.dlr.de/218293/
Dokumentart:Konferenzbeitrag (Poster)
Titel:A roadmap to Quantum Computational Fluid Dynamics
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Langer, StefanStefan.Langer (at) dlr.dehttps://orcid.org/0009-0004-3760-4243199397500
Görtz, StefanStefan.Goertz (at) dlr.dehttps://orcid.org/0009-0007-5379-785X199397501
Datum:Oktober 2025
Erschienen in:Applied Quantum Methods in Computational Science and Engineering – AQMCSE 2025
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Computational Fluid Dynamics; Quantum Computing
Veranstaltungstitel:Applied Quantum Methods in Computational Science and Engineering – AQMCSE 2025
Veranstaltungsort:Aachen, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:8 Oktober 2025
Veranstaltungsende:10 Oktober 2025
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Quantencomputing-Initiative
DLR - Forschungsgebiet:QC AW - Anwendungen
DLR - Teilgebiet (Projekt, Vorhaben):QC - ToQuaFlics
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > CASE, BS
Hinterlegt von: Langer, Dr.rer.nat. Stefan
Hinterlegt am:11 Dez 2025 14:06
Letzte Änderung:11 Dez 2025 14:06

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.