Karmakar, Chandrabali und Octavian, Dumitru Corneliu und Bhowmik, Arnab (2025) Role of Visualization in Explainable AI : diverse EO case studies. WAW Machine Learning 11, 2025-10-28, Oberpfaffenhofen, Germany.
|
PDF
11MB |
Kurzfassung
Overview In XAI, visualization simplifies complex information about "black-box" AI models into accessible formats, helping users understand model behavior, evaluate predictions, and gain trust in the AI system. By creating visual representations of features, decision-making processes, and data relationships, visualization techniques provide a fine-grained perspective of the AI's internal workings, enabling users to identify patterns, debug models, and compare different approaches for better decision-making . In this poster, we convert satellite radar images into stable colour-coded maps using BoVW→LDA textualisation and elastic search over words/topics. We provide three transparent interactions—content similarity, content search by word/topic, and sub-content match—tightly coupled with side-by-side original vs. map views. Each area carries an explicit confidence bar, last-update time, and a short history strip to communicate reliability. Known limits (rough seas, rapid melt/freeze edges, sub-tile objects) are shown through lower confidence. A lightweight feedback button records uncertain spots for review and iterative improvement. Highlights • Color-coded, georeferenced maps derived from radar image patterns • Three interactions: similarity, term/topic search, visual-phrase match • Side-by-side original quick-look and map for visual verification • Confidence, last-update, and recent history displayed on-map • Clear communication of limits; confidence reflects difficult conditions • Simple feedback channel for continuous refinement Projects • H2020 ExtremeEarth • HGF AutoCoast • AI4EU
| elib-URL des Eintrags: | https://elib.dlr.de/218287/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
| Titel: | Role of Visualization in Explainable AI : diverse EO case studies | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 28 Oktober 2025 | ||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Explainable AI | ||||||||||||||||
| Veranstaltungstitel: | WAW Machine Learning 11 | ||||||||||||||||
| Veranstaltungsort: | Oberpfaffenhofen, Germany | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsdatum: | 28 Oktober 2025 | ||||||||||||||||
| Veranstalter : | MF-DAS, DLR Oberpfaffenhofen | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
| Hinterlegt von: | Karmakar, Chandrabali | ||||||||||||||||
| Hinterlegt am: | 06 Nov 2025 12:45 | ||||||||||||||||
| Letzte Änderung: | 06 Nov 2025 12:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags