bhowmik, Arnab und Karmakar, Chandrabali und Vinge, Rikard und Gawlikowski, Jakob (2025) Explainable SVM for feature selection in Crop Monitoring. WAW Machine Learning 11, 2025-10-28, Oberpfaffenhofen, Germany.
|
PDF
13MB |
Kurzfassung
Reliable crop monitoring from Earth-observation imagery needs models that agronomists can trust. We present an explainable SVM pipeline that converts multispectral Sentinel-2 (and optional UAV) data into decisions and reasons. Spectral bands and vegetation indices are stacked; weak labels are seeded with a lightweight GMM when ground truth is scarce; a polynomial-kernel SVM is trained; and the decision function is decomposed into monomials to deliver (i) global feature rankings and (ii) per-pixel attributions. This exposes both main effects and band–band interactions (e.g., red-edge × NIR) that drive class separation, enabling targeted feature selection and simpler sensor configurations. The approach achieves competitive accuracy with a compact, interpretable feature set and produces maps that explain why each pixel is classified. The workflow is simple, reproducible, and ready for operational crop scouting.
| elib-URL des Eintrags: | https://elib.dlr.de/218285/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
| Titel: | Explainable SVM for feature selection in Crop Monitoring | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 2025 | ||||||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Crop monitoring, Gaussiam Mixture Models, Explainable AI | ||||||||||||||||||||
| Veranstaltungstitel: | WAW Machine Learning 11 | ||||||||||||||||||||
| Veranstaltungsort: | Oberpfaffenhofen, Germany | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsdatum: | 28 Oktober 2025 | ||||||||||||||||||||
| Veranstalter : | MF-DAS, DLR Oberpfaffenhofen | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
| Hinterlegt von: | Karmakar, Chandrabali | ||||||||||||||||||||
| Hinterlegt am: | 06 Nov 2025 12:43 | ||||||||||||||||||||
| Letzte Änderung: | 06 Nov 2025 12:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags