Karmakar, Chandrabali und Bhowmik, Arnab und Octavian, Dumitru Corneliu und Gawlikowski, Jakob (2025) Explainable Unsupervised Models for Forest Fire Detection. WAW Machine Learning 11, 2025-10-28 - 2025-10-30, Oberpfaffenhofen, Germany.
|
PDF
15MB |
Kurzfassung
In 2023, Greece faced its worst wildfire season, with nine major fires causing unprecedented environmental damage of 1470.31 km2.In this research we are aiming to find a low-resource-consuming, unsupervised methods with suitable feature set to automatically detect forest fire. Preliminary research shows usefulness of featureless bands , and fire indices. Existing upsupervised methods based on multispectral satellite images bare based on feature thresholding and may lack generalization. Properties in focus while for unsupervised fire detection: 1. No pretrained model, but a discovery approach 2. Featureless band information in Sentinel-2 , saving the cost and overhead of feature selection, computation 3. Certainty of modeling 4. Experiments with state-of-the-art Fire Indices (FI) and categorization of FI by image acquisition time
| elib-URL des Eintrags: | https://elib.dlr.de/218284/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
| Titel: | Explainable Unsupervised Models for Forest Fire Detection | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 15 September 2025 | ||||||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Forest Fire Detection, Explainable AI, Remote Sensing, Sentinel-2 | ||||||||||||||||||||
| Veranstaltungstitel: | WAW Machine Learning 11 | ||||||||||||||||||||
| Veranstaltungsort: | Oberpfaffenhofen, Germany | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 28 Oktober 2025 | ||||||||||||||||||||
| Veranstaltungsende: | 30 Oktober 2025 | ||||||||||||||||||||
| Veranstalter : | MF-DAS, DLR Oberpfaffenhofen | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
| Hinterlegt von: | Karmakar, Chandrabali | ||||||||||||||||||||
| Hinterlegt am: | 06 Nov 2025 12:40 | ||||||||||||||||||||
| Letzte Änderung: | 06 Nov 2025 12:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags