elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Physical Scales Matter: The Role of Receptive Fields and Advection in Satellite-Based Thunderstorm Nowcasting with Convolutional Neural Networks

Metzl, Christoph und Vahid Yousefnia, Kianusch und Bölle, Tobias und Müller, Richard und Polli, Virginia und Celano, Miria (2025) Physical Scales Matter: The Role of Receptive Fields and Advection in Satellite-Based Thunderstorm Nowcasting with Convolutional Neural Networks. Artificial Intelligence for the Earth Systems, 4 (4), Seiten 1-18. American Meteorological Society. doi: 10.1175/AIES-D-25-0035.1. ISSN 2769-7525.

[img] PDF - Nur DLR-intern zugänglich bis 2 Oktober 2026 - Verlagsversion (veröffentlichte Fassung)
17MB

Offizielle URL: https://journals.ametsoc.org/view/journals/aies/4/4/AIES-D-25-0035.1.xml

Kurzfassung

The focus of nowcasting development is transitioning from physically motivated advection methods to purely data-driven machine learning (ML) approaches. Nevertheless, recent work indicates that incorporating advection into the ML value chain has improved skill for radar-based precipitation nowcasts. However, the generality of this approach and the underlying causes remain unexplored. This study investigates the generality by probing the approach on satellite-based thunderstorm nowcasts for the first time. Resorting to a scale argument, we then put forth an explanation when and why skill improvements can be expected. In essence, advection guarantees that thunderstorm patterns relevant for nowcasting are contained in the receptive field at long forecast times. To test our hypotheses, we train residual U-Net (ResU-Net) solving segmentation tasks with lightning observations as ground truth. The input of the baseline neural network (BNN) is short time series of multispectral satellite imagery and lightning observations, whereas the advection-informed neural network (AINN) additionally receives the Lagrangian persistence nowcast of all input channels at the desired forecast time. Overall, we find only a minor skill improvement of the AINN over the BNN when considering fully averaged scores. However, assessing skill conditioned on forecast time and advection speed, we demonstrate that our scale argument correctly predicts the onset of skill improvement of the AINN over the BNN after 2-h forecast time. We confirm that, generally, advection becomes gradually more important with longer forecast times and higher advection speeds. Our work accentuates the importance of considering and incorporating the underlying physical scales when designing ML-based forecasting models.

elib-URL des Eintrags:https://elib.dlr.de/218180/
Dokumentart:Zeitschriftenbeitrag
Titel:Physical Scales Matter: The Role of Receptive Fields and Advection in Satellite-Based Thunderstorm Nowcasting with Convolutional Neural Networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Metzl, ChristophDLR, IPAhttps://orcid.org/0009-0002-9043-1690195847875
Vahid Yousefnia, KianuschDLR, IPAhttps://orcid.org/0000-0003-2644-2539195847877
Bölle, TobiasDLR, IPAhttps://orcid.org/0000-0003-3714-6882NICHT SPEZIFIZIERT
Müller, RichardDWD, Offenbach, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Polli, VirginiaAgenzia ItaliaMeteo, Bologna, ItalyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Celano, MiriaSIMC, Bologna, ItalyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Oktober 2025
Erschienen in:Artificial Intelligence for the Earth Systems
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Ja
Band:4
DOI:10.1175/AIES-D-25-0035.1
Seitenbereich:Seiten 1-18
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Potvin, CoreyNOAA/OAR/National Severe Storms LaboratoryNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:American Meteorological Society
Name der Reihe:ARTICLES
ISSN:2769-7525
Status:veröffentlicht
Stichwörter:Advection; Thunderstorms; Satellite observations; Nowcasting; Artificial intelligence; Deep learning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Impulsprojekt | IN2ACTION | Nowcasting des Wetters zur Verbesserung der Betriebssicherheit [EO], L - Klima, Wetter und Umwelt
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Angewandte Meteorologie
Hinterlegt von: Metzl, Christoph
Hinterlegt am:03 Nov 2025 07:32
Letzte Änderung:18 Nov 2025 04:06

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.