elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Exploring Soot Pathways: High-Fidelity LES Investigation of Soot Formation and Oxidation in RQL Combustion Systems Under Real Conditions

Koob, Philipp und Ferraro, Federica und Magens, Eggert und Heinze, Johannes und Soworka, Thomas und Behrendt, Thomas und Eggels, Ruud und Hasse, Christian (2025) Exploring Soot Pathways: High-Fidelity LES Investigation of Soot Formation and Oxidation in RQL Combustion Systems Under Real Conditions. In: 70th ASME Turbo Expo 2025: Turbomachinery Technical Conference and Exposition, GT 2025. ASME Turbo Expo 2025 Turbomachinery Technical Conference & Exposition, 2025-06-16 - 2025-06-20, Memphis, Tennessee. doi: 10.1115/GT2025-151330. ISBN 978-0-7918-8879-7.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://asmedigitalcollection.asme.org/GT/proceedings/GT2025/88797/V03BT04A008/1220243?searchresult=1

Kurzfassung

Developing low-emission aero-engines presents a critical step in meeting near-term climate goals. A particular challenge is accurate soot predictions with computational fluid dynamics (CFD), where the integration of advanced thermochemical interaction models is required. The extreme conditions typical of aero-engines—characterized by high temperatures, elevated pressures, and strong transients—demand reliable and accurate modeling to capture the complex pathways of soot formation and oxidation. This study focuses on the soot formation, evolution, and oxidation in a single-sector rich-quench-lean (RQL) aeroengine model combustor, employing high-fidelity numerical simulations validated against experimental data obtained as part of this investigation. Based on the validated simulation results, the high-fidelity large eddy simulations (LES) coupled with the splitbased extended quadrature method of moments (S-EQMOM) soot model are used to examine soot dynamics within the combustor. The LES predictions accurately reproduce experimental trends across a range of operating conditions. By categorizing the combustor flow field into distinct zones—flame, mixing, recirculation, and a transition between flame and mixing—the study provides a detailed quantification of soot behavior. Soot formation and growth are predominantly confined to the flame zone, while oxidation occurs throughout the chamber, reducing the soot volume fraction. High mixing rates corresponding to very low local residence times prevent complete soot oxidation, increasing the probability of soot breakthrough into the lean region. These findings provide critical insights for developing reduced-order models that efficiently predict soot formation. Such models are essential for reducing computational costs and advancing the design of future low-emission aero-engines. (LES) with advanced combustion and soot models. This approach allows for consistent simulations from fuel breakup to soot formation and enables a detailed investigation of the complex interactions between spray dynamics and soot under enginelike conditions. To accurately capture the primary breakup, the fuel spray particle size distribution (PSD) is sampled from SPH simulations and used to initialize Lagrangian spray particles in the LES, where secondary breakup and evaporation are predicted. The objective of this work is to apply these methods to a single-sector aero-engine combustion chamber operated at elevated pressure and high preheating temperatures, with an aeroengine fuel injector geometry, and to investigate the influence of spray dynamics on soot formation. Comparison with experimental data demonstrates that the applied methods accurately capture the overall flow and combustion characteristics. Spray characteristics sampled from SPH simulations significantly improve the accuracy of mixing and soot formation predictions compared to conventional spray representation approaches. Furthermore, an extended analysis across various operating ranges demonstrates that spray initializations tailored to the respective conditions are essential for achieving accurate pollutant predictions.

elib-URL des Eintrags:https://elib.dlr.de/218126/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Exploring Soot Pathways: High-Fidelity LES Investigation of Soot Formation and Oxidation in RQL Combustion Systems Under Real Conditions
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Koob, PhilippTechnical University of Darmstadt, Department of Mechanical Engineering, Simulation of reactive Thermo-Fluid Systems, Darmstadt, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ferraro, FedericaTechnische Universität Braunschweig, Institute of Jet Propulsion and Turbomachinery, Braunschweig, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Magens, EggertEggert.Magens (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Heinze, JohannesJohannes.Heinze (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Soworka, ThomasThomas.Soworka (at) dlr.dehttps://orcid.org/0009-0005-8443-8847NICHT SPEZIFIZIERT
Behrendt, ThomasThomas.Behrendt (at) dlr.dehttps://orcid.org/0000-0002-4154-3277NICHT SPEZIFIZIERT
Eggels, RuudRolls-Royce Deutschland Ltd & Co KGNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hasse, ChristianTechnical University of Darmstadt, Department of Mechanical Engineering, Simulation of reactive Thermo-Fluid Systems, Darmstadt, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:11 August 2025
Erschienen in:70th ASME Turbo Expo 2025: Turbomachinery Technical Conference and Exposition, GT 2025
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1115/GT2025-151330
Name der Reihe:Volume 3B: Combustion, Fuels & Emissions
ISBN:978-0-7918-8879-7
Status:veröffentlicht
Stichwörter:LES, combustor, soot formation, soot oxidation, LII experiments
Veranstaltungstitel:ASME Turbo Expo 2025 Turbomachinery Technical Conference & Exposition
Veranstaltungsort:Memphis, Tennessee
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:16 Juni 2025
Veranstaltungsende:20 Juni 2025
Veranstalter :ASME
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Umweltschonender Antrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CP - Umweltschonender Antrieb
DLR - Teilgebiet (Projekt, Vorhaben):L - Komponenten und Emissionen, L - Triebwerkskonzepte und -integration, E - Verbrennungs- und Kraftwerkssysteme
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik > Triebwerksmesstechnik
Institut für Antriebstechnik > Brennkammer
Hinterlegt von: Soworka, Thomas
Hinterlegt am:01 Dez 2025 11:38
Letzte Änderung:01 Dez 2025 11:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.