Gültekin, Furkan und Koz, Alper und Bahmanyar, Reza und Azimi, Seyedmajid und Lütfi Süzen, Mehmet (2025) Fusing Convolution and Vision Transformer Encoders for Object Height Estimation from Monocular Satellite and Aerial Images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Seiten 3709-3718. ICCV - 3D VAST, 2025-10-19 - 2025-11-10, Honolulu, Hawaii.
|
PDF
1MB |
Kurzfassung
Accurate height estimation from aerial and satellite imagery is crucial for large-scale 3D scene modeling, which has applications in urban planning, environmental monitoring, and disaster management. In this work, we propose integrating convolutional neural networks (CNNs) and vision transformers (ViTs) to leverage both local and global feature extraction. Our experiments show that using a combination of CNN and ViT encoders significantly improves accuracy compared to relying on either one alone, as CNNs capture fine details while ViTs enhance contextual understanding. Additionally, we incorporate a segmentation head to enhance pixel-level precision, particularly at object boundaries. Evaluated on the DFC2019 and DFC2023 datasets, our proposed fusion approach outperforms baseline methods across multiple metrics. For instance, root-mean-squared error is reduced by 5%–13%, and accuracy is improved by 4%–9% in the delta threshold metric. The results also demonstrate strong generalizability across diverse sensors, acquisition altitudes, viewing angles, and real-world scenarios. Our models are released at https://github.com/Furkangultekin/FusedHE
| elib-URL des Eintrags: | https://elib.dlr.de/218107/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
| Titel: | Fusing Convolution and Vision Transformer Encoders for Object Height Estimation from Monocular Satellite and Aerial Images | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | Juli 2025 | ||||||||||||||||||||||||
| Erschienen in: | Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 3709-3718 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Fernerkundung | ||||||||||||||||||||||||
| Veranstaltungstitel: | ICCV - 3D VAST | ||||||||||||||||||||||||
| Veranstaltungsort: | Honolulu, Hawaii | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 19 Oktober 2025 | ||||||||||||||||||||||||
| Veranstaltungsende: | 10 November 2025 | ||||||||||||||||||||||||
| Veranstalter : | ICCV International Conference on Computer Vision | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||||||||||
| HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - ACT4Transformation - Automated and Connected Technologies for Mobility Transformation, V - SaiNSOR | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
| Hinterlegt von: | Azimi, Seyedmajid | ||||||||||||||||||||||||
| Hinterlegt am: | 31 Okt 2025 12:06 | ||||||||||||||||||||||||
| Letzte Änderung: | 07 Nov 2025 21:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags