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Abstract

Accurate height estimation from aerial and satellite im-
agery is crucial for large-scale 3D scene modeling, which
has applications in urban planning, environmental monit-
oring, and disaster management. In this work, we propose
integrating convolutional neural networks (CNNs) and vis-
ion transformers (ViTs) to leverage both local and global
feature extraction. Our experiments show that using a
combination of CNN and ViT encoders significantly im-
proves accuracy compared to relying on either one alone,
as CNNs capture fine details while ViTs enhance contex-
tual understanding. Additionally, we incorporate a seg-
mentation head to enhance pixel-level precision, particu-
larly at object boundaries. Evaluated on the DFC2019 and
DFC2023 datasets, our proposed fusion approach outper-
forms baseline methods across multiple metrics. For in-
stance, root-mean-squared error is reduced by 5%–13%,
and accuracy is improved by 4%–9% in the delta threshold
metric. The results also demonstrate strong generalizab-
ility across diverse sensors, acquisition altitudes, viewing
angles, and real-world scenarios. Our models are released
at https://github.com/Furkangultekin/FusedHE.

1. Introduction

The extraction of height information from satellite and aer-
ial images is conventionally achieved using photogrammet-
ric methods [6, 30]. However, these methods require hu-
man supervision and multiple images from different angles,
and are also dependent on various parameters, such as cam-
era settings and flight altitudes. Recently, advancements in
artificial intelligence and the availability of labelled data-
sets have driven interest in deep learning-based approaches.
These approaches can extract depth or height information
even from a single image without manual intervention or
additional parameter tuning.

Obtaining meaningful elevation information only from
pixel brightness in optical imagery is challenging; therefore,
both local and global features must be considered. As illus-
trated in Fig. 1, in the areas indicated in the blue and green
boxes, pixels that are close to each other can carry informa-
tion from different objects and represent different local fea-
tures. Conversely, pixels distant from each other in the areas
indicated in the red and yellow boxes can carry information
from a similar object and reveal global pixel relationships.

Convolutional Neural Networks (CNNs) [16, 18, 23,
24, 36, 37] and Vision Transformers (ViTs) [10, 11, 28,
39, 40, 42, 43] are two prominent deep learning architec-
tures frequently utilized for in-situ image depth estimation.
These architectures have been adapted for height estimation
tasks in satellite imagery. CNNs focus on extracting local
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Figure 1. A satellite imagery with its height map and zoomed-
in examples demonstrate, local features can provide information
about different objects in neighboring pixels (blue and green ex-
amples), while distant features can carry information about similar
objects (red and yellow examples).

features through convolutional layers and capturing spatial
feature hierarchies. In contrast, ViTs utilize self-attention
mechanisms to model long-range dependencies and global
context, achieving broader image understanding. The ex-
isting methods for height estimation from single images,
whether employing CNNs or ViTs, demonstrate signific-
ant limitations, emphasizing the complexity of extracting
and effectively utilizing all relevant local and global fea-
tures from a single image. This underscores the necessity to
leverage the complementary strengths of these models.

To address this need, we propose an encoder-level gen-
eral fusion strategy that combines the strengths of CNNs
and ViTs for height estimation from monocular satellite im-
ages. This Fused Height Estimation (Fused-HE) method
operates by extracting features from two parallel encoder
branches—one CNN-based and one ViT-based—and fusing
them at multiple scales through a series of Feature Fusion
Blocks (FFBs). These fused features are then passed to a
shared decoder with skip connections to retain spatial detail
and enhance prediction accuracy. We evaluated the Fused-
HE method using multiple encoder combinations, includ-
ing CNNs, standard ViTs, and hierarchical ViTs. The res-
ults show that fusing ResNet-101 [18] with standard ViTs,
such as DPT [34], marginally improves performance. How-
ever, combining ResNet-101 with hierarchical ViTs like
Mix Transformer Encoder (MiT)-B4 [43] significantly im-
proves accuracy, highlighting the effectiveness of integrat-
ing local and multi-scale global features. These results im-
ply that encoder-level fusion success depends not only on
the fusion mechanism itself, but also on the compatibility
between the CNN and ViT backbones.

To improve the accuracy of height estimation at the pixel
level, we incorporate a segmentation head into the archi-
tecture. This head uses features from the shared encoder-
decoder network to predict object masks. This enables
the allocation of height values to the appropriate pixels.
We call this method Fused Segmentation Height Estima-
tion (FusedSeg-HE). We evaluated the Fused-HE method
with and without auxiliary segmentation, as well as multiple
CNN-ViT encoder combinations, against baseline single-
encoder models on the DFC2019 [35] and DFC2023 [32]
datasets. The baseline models include: CNN-HE, which
uses ResNet-101 and excels in local feature extraction, par-
ticularly capturing sharp object boundaries; ViT-HE, based
on the DPT-Base encoder, which focuses on global con-
textual understanding but often lacks precision at object
boundaries; and MiT-HE, which leverages the hierarchical
MiT-B4 encoder for multi-scale feature extraction, offering
a balance between detail and generalization.

The evaluations concluded that: i) Fused-HE-based con-
figurations employing convolutional and hierarchical vision
transformer encoders consistently achieved superior per-
formance in both quantitative and qualitative assessments,
confirming the effectiveness of jointly extracting local and
global features through encoder-level fusion; ii) the in-
clusion of a segmentation-aware auxiliary head, as imple-
mented in the FusedSeg-HE variant, provided additional
gains in pixel-level accuracy—particularly at object bound-
aries—demonstrating the benefits of incorporating semantic
guidance; iii) training on the DFC2023 dataset, which offers
global coverage and strong diversity, enables the models to
achieve superior generalization, reinforcing its robustness
across varying geographic and structural contexts; iv) val-
idations on images from various satellite and airborne plat-
forms demonstrate the generalizability of our proposed fu-
sion methods for real-world applications.

2. Related Work
The success of CNN-based models, such as the Multi-
Scale Deep Network [12] and MiDaS [33] in in-situ im-
agery, has led to the increased popularity of CNNs
for height estimation in satellite and aerial imagery.
The models IM2height [31], IM2Elevation [27], and
IMG2nDSM [20] have demonstrated the effectiveness of
multi-scale feature extraction, showing promising results.
The incorporation of hierarchical architectures, such as Res-
Net, into these models serves to further enhance their capab-
ilities by facilitating the capture of both local and high-level
image features [1, 25].

ViTs are also demonstrating success in depth estima-
tion tasks on in-situ images, with models like Dense Pre-
diction Transformers (DPT) [34], GLP-Depth [21], and
Depth Anything [46] combining ViTs with feature extrac-
tion for precise depth predictions. Other approaches, such



as AdaBins [5] and BinsFormer [26], improve performance
by discretizing depth values into bins and estimating their
center values. However the application of ViTs in height
estimation from single aerial and satellite images is limited.
The Knowledge Transfer for Label-Efficient Monocular
Height Estimation model [45] uses Swin transformers for
feature extraction, leveraging pre-trained synthetic data for
transfer learning before fine-tuning on real satellite images.
Similarly, in [8, 9], the authors integrate ViTs into a CNN-
based encoder-decoder network, transforming height estim-
ation into a classification-regression task using AdaBins.

Studies combining monocular depth estimation with
semantic segmentation have shown improved accuracy in
both tasks on in-situ images. The authors in [17] used
a separate encoder-decoder model for segmentation guid-
ance in self-supervised depth estimation. The authors
in [22] employed a shared encoder with two separate de-
coders for segmentation and depth estimation. Several re-
cent works [7, 41, 44] have approached height estimation
and semantic segmentation as a multi-task learning prob-
lems in the context of aerial and satellite images. These
models employ a single CNN encoder, such as ResNet,
to extract shared feature representations, which are then
passed through multiple task-specific decoders to produce
both height maps and semantic segmentation outputs.

In supervised learning, models are trained using annot-
ated ground truth data, whereas in self-supervised learn-
ing, they learn directly from input data without labeled
supervision. Self-supervised methods are widely used in
monocular depth estimation [13, 14, 29, 48], with models
like MonoDepth2 [15] leveraging convolutional encoders
for depth prediction and auxiliary networks for pose es-
timation. Recently, self-supervised ViTs such as Mono-
Former [4] and MonoViT [47] have been proposed, com-
bining transformers with CNNs for enhanced feature extrac-
tion. Although self-supervised methods effectively estimate
relative depth by extracting disparities, they struggle with
absolute height prediction, particularly in satellite imagery,
due to the lack of ground truth data. This limitation makes
supervised methods the more suitable choice for the height
estimation tasks in this study.

3. Dataset
In this work, we use the DFC2019 [35] and DFC2023 [32]
datasets, published as part of the annual Data Fusion Con-
test (DFC) organized by the Institute of Electrical and Elec-
tronics Engineers (IEEE). These datasets contain satellite
images along with corresponding height data in the form of
nDSM as ground truth, enabling the training of models to
predict height values from single satellite images.

The DFC2019 dataset consists of 26 WorldView(WV)-3
satellite images of Jacksonville, Florida, captured between
2014 and 2016, and 43 images of Omaha, Nebraska,

captured between 2014 and 2015. It includes panchro-
matic, 8-band visible, and near-infrared (VNIR) images.
The Ground Sampling Distance (GSD) is approximately
35cm per pixel for panchromatic images and 1.35m for
8-band visible and VNIR images, all of which are pan-
sharpened. The nDSM raster data is derived from Airborne
LiDAR, with an Aggregate Nominal Pulse Spacing (ANPS)
of approximately 80cm. The DFC2023 dataset includes
a large collection of optical images from the SuperView-
1, Gaofen-2, and Gaofen-3 satellites, with GSD of 0.5m,
0.8m, and 1m, respectively. The nDSM raster data is gen-
erated from stereo images captured by the Gaofen-7, WV-1
and -2 satellites, with a GSD of roughly 2m. The dataset
covers images from seventeen cities across six continents.
Details on the datasets are in the supplementary materials.

4. Methods

This section explains our proposed encoder fusion method,
Fused-HE, and its variant with an additional segmentation
head, FusedSeg-HE.

4.1. Fused-HE

In principle, Fused-HE is an encoder-decoder supervised
learning method in which a CNN and a ViT are fused to
serve as the encoder. For the explanation, we consider
ResNet-101 and MiT-B4 as the fused CNN and hierarch-
ical ViT encoders, respectively. Fig. 2 illustrates an over-
view of the method. As shown, the input satellite image
is processed independently by the two encoders, and their
multi-scale features are aligned and fused using Feature Fu-
sion Blocks (FFBs). The fused outputs are then decoded via
skip connections to refine spatial detail. Finally, the height
map is resized to match the input dimensions.

CNN encoder: The ResNet-101 encoder consists of four
main convolutional blocks, each comprising three convo-
lution layers: Conv1×1, Conv3×3, and Conv1×1. These
layers are repeated 3, 4, 23, and 3 times in the respective
blocks. The output size of each block i = {1, 2, 3, 4} is
given by: H

2i+1 × W
2i+1 × Cresneti , where H and W denote

the height and width of the input image, respectively, and
Cresneti ∈ {256, 512, 1024, 2048}.

ViT encoder: The MiT-B4 encoder integrates global
feature extraction with a hierarchical CNN-like structure.
Unlike standard ViTs, it applies overlapped patch merging
at the end of each transformer block, dynamically adjusting
feature sizes within the encoder. As illustrated in Fig. 2,
it consists of four main transformer blocks, each generat-
ing output at different resolutions through a sequence of
self-attention and Mix-FFN, a feedforward layer introduced
in [43]. The number of repetitions for each block is 3, 8, 27,
and 3, respectively. At the end of each block, an overlapped
patch merging unit is applied. The output resolution of each



Figure 2. Fused-HE method with ResNet-MiT encoder. The input image first goes through the Resnet Encoder and MiT Encoder separately
in the upper row, where the resulting features after the convolution and transformer block at each scale are concatenated with the features
fusion block. The outputs of the fusing blocks are successively decoded at each scale at the decoder side, illustrated in the lower row.

Figure 3. Feature Fusion Blocks and Decoder Blocks

block i = {1, 2, 3, 4} can be shown as H
2i+1 × W

2i+1 ×Cmiti ,
where Cmiti ∈ {64, 128, 320, 512}, respectively.

Feature Fusion Blocks: The feature maps from the two
encoders at each scale differ in dimensions. Since the Res-
Net encoder produces feature maps with more channels than
the MiT encoder, two convolutional layers are applied to the
ResNet outputs, first halving the channels, then matching
them to the MiT output, as shown in Fig. 3. The adjusted
feature maps are then concatenated, resulting in a fused out-
put of size H

2i+1 × W
2i+1 × 2Cmiti .

Decoder Block: As shown in Fig. 3, each Decoder
Block receives two inputs: one from the previous De-
coder Block and one from the corresponding Feature Fusion
Block. Before concatenation, the channel count of the input
from the previous Decoder Block is reduced to match that
of the Feature Fusion Block. After concatenation, a con-
volutional layer is applied, followed by spatial upsampling
to prepare for the next Decoder Block. Finally, the output
of the last Decoder Block is brought to the input resolution
in the height head. Since height estimation is a regression
problem, the Mean Squared Error (MSE) loss function is
the preferred choice.

4.2. FusedSeg-HE
FusedSeg-HE aims to improve accuracy by incorporating a
segmentation head into the Fused-HE method, as illustrated
in Fig. 4. In height estimation, errors often occur at ob-
ject boundaries, primarily because models struggle to cor-
rectly identify object locations and assign height values to
the appropriate pixels. Although the predicted height val-
ues may be accurate, misalignment at object edges can sig-
nificantly impact the error. To mitigate this issue, the seg-
mentation head helps the model distinguish object pixels,
ensuring height values are assigned to the correct locations.
The ground truth for segmentation can be directly derived
from nDSM data, where terrain height values are elimin-
ated, leaving only object heights. This enables the creation



Figure 4. An illustration of the Segment Head and the Height Head
of the FusedSeg-HE model.

of a binary segmentation mask by classifying terrain areas
with a value of 0 and objects with values greater than 0.

As shown in Fig. 4, the segmentation and height heads
share the same features extracted by the network. The
height head uses the MSE loss function, while the segment-
ation head employs the Binary Cross Entropy (BCE) loss
function. The total loss is computed as:

Losstotal = MSE(yi, ŷi) + λ ·BCE(si, ŝi) (1)

where yi and ŷi denote the target and predicted height maps
in the i-th batch, respectively, while si and ŝi represent the
target and predicted segmentation binary masks in the same
batch. The parameter λ controls the influence of the seg-
mentation loss on the height prediction.

5. Results and Discussion
In this section, we compare the implemented following
Fused-HE and FusedSeg-HE methods with three baseline
models: a CNN-HE with a ResNet encoder, a ViT-HE based
on the DPT architecture, and a MiT-HE using the Seg-
Former encoder. The baseline models use a single state-of-
the-art encoder. For the sake of comparison, we use these
encoders in the fusion process to demonstrate whether the
fused encoder outperforms each individual encoder. Addi-
tionally, the Depth Anything model is fine-tuned for com-
parison. Tab. 1 provides details on all the trained models.

5.1. Experimental Setup
The Fused-HE models are trained on the DFC2019 and
DFC2023 datasets using a learning rate of 1×10−5 and the
Adam optimizer for 70 epochs. Batch sizes are set to 4 for
DFC2019 and 1 for DFC2023. The FusedSeg-HE model
is trained on the DFC2023 dataset with a learning rate of

Table 1. Encoder types of trained models and details of head units.
Models Encoder Type Encoder Head Params

CNN-HE Conv ResNet-101 [18] Height 144M
ViT-HE Standard ViT DPT-Base [11] Height 119M
MiT-HE Hierarchi. ViT MiT-B4 [43] Height 101M
Fused-HE-RV Conv+Standard ViT ResNet-101+DPT-Base Height 275M
Fused-HE-RM Conv+Hierarchi. ViT ResNet-101+MiT-B4 Height 181M
FusedSeg-HE-RM Conv+Hierarchi. ViT ResNet-101+MiT-B4 Height+Segment. 181M

5 × 10−5 using the Adam optimizer for 70 epochs with a
batch size of 1.

5.2. Quantitative Evaluation
We evaluate model performance using multiple met-
rics, including Root Mean Square Error (RMSE), logar-
ithmic RMSE (RMSElog), delta (δ) threshold accuracy, log-
arithmic error (log10), Scale-Invariant logarithmic error (SI-
log) and Intersection over Union (IoU). In addition, we use
masked RMSE (RMSEmask), which calculates the error
only for pixels where the target height values exceed two
meters. This helps eliminate the influence of background
pixels, which have zero error.

Tab. 2 and Tab. 3 compare the performance of our fusion-
based models against the baselines on the DFC2023 and
DFC2019 datasets. As shown in Tab. 2, the Fused-HE
Model, outperforms the baseline models and Depth Any-
thing (vit-b) training from scratch. Despite being pre-
trained on diverse depth-related datasets, including those re-
lated to drone imagery, the Depth Anything model achieved
results comparable to those of our proposed Fused-HE
model in fine-tuning. Notably, Fused-HE, although based
on general-purpose ImageNet-pretrained encoders (ResNet
and SegFormer MiT), outperformed Depth Anything in sev-
eral metrics. Furthermore, our FusedSeg-HE model consist-
ently surpassed both models across all evaluation metrics,
demonstrating its superior generalization and effectiveness
for satellite-based height estimation.

Tab. 3 shows results on the high-resolution DFC2019
dataset, containing imagery from two cities. MiT-HE again
outperforms other baselines when trained from scratch,
while fine-tuned ViT-HE achieves the best accuracy due to
prior training on large aerial datasets. This highlights that
standard ViTs need more data to generalize, whereas hier-
archical ViTs like MiT are more sample-efficient. Our fu-
sion method consistently achieves the best results across all
metrics and training setups.

Tab. 4 analyzes the impact of λ on the performance of
FusedSeg-HE. Higher λ values prioritize segmentation ac-
curacy at the expense of height estimation, while lower val-
ues improve height estimation but reduce segmentation per-
formance. The best balance is achieved at λ = 0.005, op-
timizing both segmentation and height estimation accuracy.

Our experiments highlight the importance of combin-
ing local and global feature extraction for height estimation
from satellite imagery. Fused-HE method using ResNet-



Table 2. Results of different configurations of Fused-HE, FusedSeg-HE, and baseline methods on the DFC2023 dataset. Arrows indicate
whether higher or lower values are preferable, with the best results in bold and the second-best underlined. Results of models trained from
scratch are presented in the upper block, while results of models fine-tuned with pre-trained weights are shown in the lower block.
Models Pre-Trained RMSE ↓ RMSEmask ↓ RMSE log ↓ IoU ↑ log10 ↓ SI log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
CNN-HE - 4.286 6.883 4.009 0.583 0.762 3.927 0.706 0.755 0.782
ViT-HE - 4.812 7.799 4.120 0.539 0.798 4.061 0.696 0.742 0.769
Depth Anything [46] - 4.611 7.459 4.233 0.553 0.811 4.001 0.671 0.718 0.748
MiT-HE - 4.253 6.870 3.899 0.594 0.720 3.833 0.714 0.760 0.785
Fused-HE-RV - 4.792 7.611 3.984 0.546 0.732 3.941 0.709 0.758 0.785
Fused-HE-RM - 4.206 6.852 3.852 0.598 0.716 3.779 0.719 0.765 0.789
CNN-HE ✓ 3.854 6.163 3.455 0.645 0.576 3.413 0.767 0.811 0.833
ViT-HE ✓ 3.801 6.128 3.220 0.670 0.503 3.195 0.787 0.832 0.854
MiT-HE ✓ 3.490 5.876 3.115 0.689 0.488 3.121 0.792 0.835 0.857
Depth Anything [46] ✓ 3.407 5.508 2.846 0.715 0.441 2.846 0.802 0.846 0.867
Fused-HE-RV ResNet-101+DPT-Base 3.730 6.036 3.334 0.659 0.529 3.305 0.774 0.826 0.855
Fused-HE-RV DPT-Base 3.835 6.021 3.221 0.670 0.499 3.195 0.790 0.835 0.858
Fused-HE-RM ResNet-101+MiT-B4 3.384 5.522 3.029 0.703 0.463 2.998 0.803 0.843 0.862
Fused-HE-RM MiT-B4 3.379 5.524 2.932 0.706 0.431 2.911 0.810 0.850 0.871
FusedSeg-HE-RM MiT-B4 3.346 5.451 2.632 0.739 0.355 2.620 0.836 0.878 0.897

Table 3. Results of different configurations of Fused-HE and
baseline methods on the DFC2019 dataset. Arrows indicate
whether higher or lower values are preferable, with the best res-
ults in bold and the second-best underlined. Results of models
trained from scratch are presented in the upper block, while res-
ults of models fine-tuned with pre-trained weights are shown in
the lower block.
Models Pre-Trained RMSE ↓ RMSEmask ↓ RMSE log ↓ IoU ↑ log10 ↓ SI log ↓
CNN-HE - 2.953 4.470 5.819 0.436 1.645 5.391
ViT-HE - 2.651 4.311 5.552 0.477 1.675 5.204
MiT-HE - 2.687 4.158 5.419 0.496 1.481 5.045
Fused-HE-RM - 2.569 4.097 5.179 0.511 1.358 4.870
CNN-HE ✓ 2.597 4.011 5.048 0.523 1.287 4.777
ViT-HE ✓ 2.129 3.713 4.114 0.618 0.998 4.012
MiT-HE ✓ 2.322 3.847 4.3777 0.585 1.010 4.221
Fused-HE-RV DPT-Base 2.216 3.590 4.760 0.597 1.218 4.479
Fused-HE-RM MiT-B4 2.057 3.586 4.018 0.634 0.921 3.994

Table 4. Results of FusedSeg-HE-RM for different λ values in bal-
ancing the loss on the DFC2023 dataset. Arrows indicate whether
higher or lower values are preferable, with the best results in bold
and the second-best underlined.
λ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ RMSE ↓ RMSEmask ↓ IoU ↑
1 0.802 0.862 0.892 3.943 6.725 0.735
0.5 0.803 0.865 0.895 3.762 6.391 0.738
0.05 0.824 0.876 0.896 3.653 5.919 0.755
0.01 0.831 0.875 0.895 3.442 5.721 0.735
0.005 0.836 0.878 0.897 3.346 5.451 0.739
0.001 0.821 0.863 0.883 3.431 5.527 0.717
0.0005 0.819 0.860 0.880 3.456 5.509 0.713

101 and MiT-B4 encoders outperforms individual encoders
by leveraging CNNs for edge-aware features and ViTs for
global context, while FusedSeg-HE further boosts accuracy
through segmentation. Hierarchical vision transformers like
MiT enhance efficiency with deeper architectures and fewer
parameters. Overall, hierarchical fusion proves highly ef-
fective, achieving state-of-the-art accuracy and surpassing
baseline models.

5.3. Qualitative Evaluation
Fig. 5 shows five example satellite images and the height
estimation results of Fused-HE, FusedSeg-HE, and the

baseline methods, all trained on the DFC2023 dataset. For
one image, two zoomed-in areas are also shown. The res-
ults indicate that CNN-based methods capture sharp fea-
tures, such as building edges, while ViTs produce smoother
and more accurate height estimations. Fused-HE outper-
forms both by effectively integrating local and global fea-
tures. Also, the segmentation head in FusedSeg-HE further
improves height assignment, especially at object boundar-
ies. More results are in the supplementary materials.

Fig. 6 shows the height profiles of the FusedSeg-HE
model trained on the DFC2023 dataset for three selected
regions, plotted and compared to the ground truth profiles.
The results show that the model accurately identifies build-
ing locations and assigns height values to the correct pixels.
However, it tends to produce smoother surfaces, making it
challenging to capture abrupt height changes over short dis-
tances. Further 3D visualizations of FusedSeg-HE predic-
tions are provided in the supplementary material.

Generalizability: Our goal in this work is to develop
robust height estimation methods for satellite and aerial im-
ages that generalize well across different datasets. Fig. 7
presents height estimations from the FusedSeg-HE model,
trained on nadir-view satellite images from the DFC2023
dataset, applied to images from various sensors and real-
world scenarios. The results on pre- and post-disaster
images from the WorldView-3 (WV3) satellite clearly cap-
ture changes in building heights, demonstrating the accur-
acy of the estimations. Similarly, in the post-flood image,
the height differences between affected and unaffected areas
are distinctly visible. Additionally, the model’s perform-
ance on high-resolution aerial images, which may include
off-nadir angles, is shown in the last three rows. The pre-
dicted height values are promising, further validating the
model’s robustness. Overall, these results indicate that our
proposed method can be effectively applied to real-world
tasks such as disaster management, urban planning, and en-



Figure 5. Results of Fused-HE, FusedSeg-HE, and baseline methods, all trained on DFC2023, shown on a test image from DFC2023 with
two zoomed-in areas. The scale bars represent height values in meters.

Figure 6. Height profile of selected buildings from a FusedSeg-HE-RM prediction and its ground truth on the DFC2023 test data.

vironmental monitoring.

Limitation: Fig. 8 presents the FusedSeg-HE results
for an image containing buildings with different heights
but similar visual characteristics. This challenge may arise
from factors such as similar roof materials or shadows,
which reduce feature discriminability. As shown in the pre-
dicted height values, the model struggles to differentiate
between the buildings, resulting in similar height estima-

tions for both.

6. Conclusions
This work presents Fused-HE and FusedSeg-HE, two meth-
ods designed for height estimation from satellite imagery by
integrating convolutional and vision transformer encoders.
Our experiments show that relying solely on CNNs or ViTs
as encoders limits performance, whereas combining them



Figure 7. Results of the FusedSeg-HE-RM model on images from
the WV3 satellite before and after the earthquake in Turkey [38]
with 30 cm GSD (a, b), WV3 after flooding in Libya (c), nadir
and oblique aerial images with 13 cm and 10 cm GSD from the
SkyScapes and EAGLE datasets [2, 3] (d, e), and an ortho aerial
image with 5 cm GSD from the Potsdam dataset [19] (f). The scale
bars represent height values in meters.

Figure 8. FusedSeg-HE-RM results on a satellite image from the
DFC2023 test dataset, highlighting the model’s difficulty in pre-
dicting accurate height values for objects with different heights
but similar visual characteristics. The scale bars are in meters.

leverages the strengths of both, CNNs for capturing fine de-
tails and ViTs for global context, leading to significantly
improved accuracy. The addition of a segmentation head in
FusedSeg-HE further refines height predictions by improv-
ing pixel-level alignment, particularly at object boundaries.

Hierarchical vision transformers, like MiT, enhance ef-
ficiency with deeper architectures and fewer parameters
while preserving multi-scale feature extraction. Our res-
ults show hierarchical fusion as highly effective, achieving
state-of-the-art accuracy and outperforming baseline mod-
els across datasets. The models generalize well across real-
world scenarios, including disaster areas, high-resolution
aerial imagery, and diverse sensors like WV-3.

This study emphasizes the value of combining local and
global feature extraction for height estimation and the syn-
ergy between segmentation and regression methods. Future
work will focus on improving model efficiency and adapt-
ability across diverse aerial and satellite datasets and ima-
ging conditions.
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Peloux, Frédéric Champagnat, and Andrés Almansa. Mul-
titask learning of height and semantics from aerial images.
IEEE Geoscience and Remote Sensing Letters, 17(8):1391–
1395, 2019.

[8] Shengjie Chen, Yushan Shi, Zhiqiang Xiong, and Xiao Xi-
ang Zhu. Adaptive bins for monocular height estimation
from single remote sensing images. In IGARSS 2023-2023
IEEE International Geoscience and Remote Sensing Sym-
posium, pages 7015–7018. IEEE, 2023.

[9] Shengjie Chen, Yushan Shi, Zhiqiang Xiong, and Xiao Xi-
ang Zhu. Htc-dc net: Monocular height estimation from
single remote sensing images. IEEE Transactions on
Geoscience and Remote Sensing, 61:1–18, 2023.

[10] Xiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren,
Xiaolin Wei, Hu Xia, and Chunhua Shen. Twins: Revisit-
ing the design of spatial attention in vision transformers. In
Advances in Neural Information Processing Systems, pages
9355–9366, 2021.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mo-
stafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale.
arXiv preprint, 2020.

[12] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. In Advances in Neural Information Processing Sys-
tems, 2014.

[13] Ravi Garg, Vijay Kumar B. G, Gustavo Carneiro, and Ian
Reid. Unsupervised cnn for single view depth estimation:
Geometry to the rescue. In Computer Vision–ECCV 2016:

14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part VIII, pages 740–
756. Springer International Publishing, 2016.

[14] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow.
Unsupervised monocular depth estimation with left-right
consistency. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 270–279,
2017.

[15] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J. Brostow. Digging into self-supervised monocular
depth estimation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 3828–3838,
2019.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016.

[17] Vitor Guizilini, Ravi Hou, Jinkun Li, Rares Ambrus, and Ad-
rien Gaidon. Semantically-guided representation learning for
self-supervised monocular depth. arXiv preprint, 2020.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[19] International Society for Photogrammetry and Remote Sens-
ing (ISPRS). 2d semantic labeling contest - potsdam, 2023.

[20] Sotiris Karatsiolis, Andreas Kamilaris, and Ian Cole.
Img2ndsm: Height estimation from single airborne rgb im-
ages with deep learning. Remote Sensing, 13(12):2417,
2021.

[21] Dongwon Kim, Woojin Ka, Pyo Ahn, Doyeon Joo, Sungjin
Chun, and Junmo Kim. Global-local path networks for mon-
ocular depth estimation with vertical cutdepth. arXiv pre-
print, 2022.

[22] Maximilian Klingner, Jan A. Termöhlen, Jakub Mikolajczyk,
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