Feng, Qiang und Feng, Jianxiang und Chen, Zhaopeng und Triebel, Rudolph und Knoll, Alois (2025) FFHFlow: Diverse and Uncertainty-Aware Dexterous Grasp Generation via Flow Variational Inference. In: 9th Conference on Robot Learning, CoRL 2025, 305, Seiten 1352-1381. Conference on Robot Learning, 2025-09-27 - 2025-09-30, Seoul, Korea.
|
PDF
35MB |
Offizielle URL: https://proceedings.mlr.press/v305/feng25a.html
Kurzfassung
Synthesizing diverse, uncertainty-aware grasps for multi-fingered hands from partial observations remains a critical challenge in robot learning. Prior generative methods struggle to model the intricate grasp distribution of dexterous hands and often fail to reason about shape uncertainty inherent in partial point clouds, leading to unreliable or overly conservative grasps. We propose FFHFlow, a flow-based variational framework that generates diverse, robust multi-finger grasps while explicitly quantifying perceptual uncertainty in the partial point clouds. Our approach leverages a normalizing flow-based deep latent variable model to learn a hierarchical grasp manifold, overcoming the mode collapse and rigid prior limitations of conditional Variational Autoencoders (cVAEs). By exploiting the invertibility and exact likelihoods of flows, FFHFlow introspects shape uncertainty in partial observations and identifies novel object structures, enabling risk-aware grasp synthesis. To further enhance reliability, we integrate a discriminative grasp evaluator with the flow likelihoods, formulating an uncertainty-aware ranking strategy that prioritizes grasps robust to shape ambiguity. Extensive experiments in simulation and real-world setups demonstrate that FFHFlow outperforms state-of-the-art baselines (including diffusion models) in grasp diversity and success rate, while achieving run-time efficient sampling. We also showcase its practical value in cluttered and confined environments, where diversity-driven sampling excels by mitigating collisions.
| elib-URL des Eintrags: | https://elib.dlr.de/217939/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
| Titel: | FFHFlow: Diverse and Uncertainty-Aware Dexterous Grasp Generation via Flow Variational Inference | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 2025 | ||||||||||||||||||||||||
| Erschienen in: | 9th Conference on Robot Learning, CoRL 2025 | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| Band: | 305 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 1352-1381 | ||||||||||||||||||||||||
| Name der Reihe: | Proceedings of Machine Learning Research | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Dexterous Grasping, Normalizing Flows, Uncertainty-Awareness | ||||||||||||||||||||||||
| Veranstaltungstitel: | Conference on Robot Learning | ||||||||||||||||||||||||
| Veranstaltungsort: | Seoul, Korea | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 27 September 2025 | ||||||||||||||||||||||||
| Veranstaltungsende: | 30 September 2025 | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Robotik | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Erklärbare Robotische KI, R - Multisensorielle Weltmodellierung (RM) [RO] | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||||||
| Hinterlegt von: | Triebel, Rudolph | ||||||||||||||||||||||||
| Hinterlegt am: | 23 Okt 2025 10:06 | ||||||||||||||||||||||||
| Letzte Änderung: | 23 Okt 2025 10:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags