Köpken, Anne und Batti, Nesrine und Bauer, Adrian Simon und Butterfass, Jörg und Ehlert, Tristan Hagen und Friedl, Werner und Gumpert, Thomas und Lay, Florian Samuel und Luo, Xiaozhou und Manaparampil, Ajithkumar Narayanan und Mayershofer, Luisa und Raffin, Antonin und Schmidt, Florian und Seidel, Daniel und Exter, Emiel den und Luz, Rute und Schmidt, Annika und Schmaus, Peter und Leidner, Daniel und Krüger, Thomas und Lii, Neal Yi-Sheng (2025) Toward Robust Task Execution through Telerobotic Failure Recovery in Space Operations. In: 2025 IEEE Aerospace Conference, AERO 2025, Seiten 1-13. IEEE. IEEE Aerospace Conference 2025, 2025-03-03, Big Sky, MT, USA. doi: 10.1109/AERO63441.2025.11068192. ISBN 979-8-3503-5597-0. ISSN 2996-2358.
|
PDF
12MB |
Offizielle URL: https://ieeexplore.ieee.org/document/11068192
Kurzfassung
Robotics will continue to be essential for future space missions, supporting exploration, construction, and maintenance on distant celestial bodies. However, instructing these systems from Earth is challenging because of communication de-lays and environmental uncertainties. A more suitable approach involves commanding robots from orbit. This setup reduces the time delay between operator and robot allowing for more detailed robot commands up the way to direct teleoperation. The Surface Avatar experiment explores mission scenarios of human-robot team collaboration, where communication time delays are under several seconds. This allows for significantly more complex tasks with human-in-the-Ioop execution. In our mission design, a team of heterogeneous robots on Earth is controlled from the International Space Station (ISS) using Scalable Autonomy, balancing autonomous execution with human intervention. In this paper, we propose a recovery method where robots autonomously detect issues and request astronaut or ground control support to address task failures. This frees the astronaut from constant supervision. One way to use the newly gained time is to switch focus on commanding another robot. Our framework is validated in a Martian surface mock-up environment during an ISS-to-earth experiment session, demonstrating its effectiveness for future missions.
| elib-URL des Eintrags: | https://elib.dlr.de/217903/ |
|---|---|
| Dokumentart: | Konferenzbeitrag (Anderer) |
| Titel: | Toward Robust Task Execution through Telerobotic Failure Recovery in Space Operations |
| Autoren: | |
| Datum: | 14 Juli 2025 |
| Erschienen in: | 2025 IEEE Aerospace Conference, AERO 2025 |
| Referierte Publikation: | Ja |
| Open Access: | Ja |
| Gold Open Access: | Nein |
| In SCOPUS: | Ja |
| In ISI Web of Science: | Nein |
| DOI: | 10.1109/AERO63441.2025.11068192 |
| Seitenbereich: | Seiten 1-13 |
| Verlag: | IEEE |
| ISSN: | 2996-2358 |
| ISBN: | 979-8-3503-5597-0 |
| Status: | veröffentlicht |
| Stichwörter: | Earth, Space vehicles, Uncertainty, Delay effects, Space missions,Switches, International Space Station,Orbits, Robots , Telerobotics |
| Veranstaltungstitel: | IEEE Aerospace Conference 2025 |
| Veranstaltungsort: | Big Sky, MT, USA |
| Veranstaltungsart: | internationale Konferenz |
| Veranstaltungsdatum: | 3 März 2025 |
| Veranstalter : | IEEE |
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr |
| HGF - Programm: | Raumfahrt |
| HGF - Programmthema: | Robotik |
| DLR - Schwerpunkt: | Raumfahrt |
| DLR - Forschungsgebiet: | R RO - Robotik |
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Leichtbau-Robotik [RO], R - Autonomie & Geschicklichkeit [RO], R - Mehrfingrige Roboterhände [RO], R - On-Orbit Servicing [RO] |
| Standort: | Oberpfaffenhofen |
| Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) |
| Hinterlegt von: | Köpken, Anne |
| Hinterlegt am: | 12 Dez 2025 12:37 |
| Letzte Änderung: | 15 Dez 2025 15:33 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags