Pargmann, Max und Leibauer, Moritz und Nettelroth, Vincent und Maldonado Quinto, Daniel und Pitz-Paal, Robert (2025) Questioning the reliability of open-loop calibration methods: Introducing a robust data sampling for year-round high accuracy. Solar Energy (286), Seiten 113094-1. Elsevier. doi: 10.1016/j.solener.2024.113094. ISSN 0038-092X.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0038092X24007898
Kurzfassung
Heliostat calibration in solar tower plants is critical for optimizing plant efficiencies through precise solar tracking. Current practices often assume heliostat precision degrades over time, leading to the development of new calibration procedures utilizing time-dependent data sets. However, contrary to this prevailing assumption, our study demonstrates the consistency of tracking accuracy over extended periods when appropriate calibration points are selected. We introduce a novel data sampling method that uses sun positions in Euler angles as relevancy scores, enabling higher accuracy with a reduced data requirement. Our thorough analysis challenges the common belief that time significantly impacts calibration accuracy. Furthermore, we unveil an overlooked relationship between prediction accuracy and solar position coverage, raising legitimate concerns about the reliability of reported accuracies in previous publications. To promote transparency, we present clear data and advocate for improved reporting practices in future publications. Applying the new data set sampling to a non optimized data set we archive a year-round stable accuracy below 1.5 mrad with as little as 27 calibration points.
| elib-URL des Eintrags: | https://elib.dlr.de/217741/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | Questioning the reliability of open-loop calibration methods: Introducing a robust data sampling for year-round high accuracy | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 15 Januar 2025 | ||||||||||||||||||||||||
| Erschienen in: | Solar Energy | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| DOI: | 10.1016/j.solener.2024.113094 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 113094-1 | ||||||||||||||||||||||||
| Verlag: | Elsevier | ||||||||||||||||||||||||
| Name der Reihe: | Elsevier Ltd | ||||||||||||||||||||||||
| ISSN: | 0038-092X | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Heliostat Calibration, Data Set Sampling, Machine Learning | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||
| HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||||||
| HGF - Programmthema: | Thermische Hochtemperaturtechnologien | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | E - Intelligenter Betrieb | ||||||||||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Solarforschung > Konzentrierende Solartechnologien | ||||||||||||||||||||||||
| Hinterlegt von: | Brockel, Linda | ||||||||||||||||||||||||
| Hinterlegt am: | 27 Okt 2025 10:05 | ||||||||||||||||||||||||
| Letzte Änderung: | 03 Nov 2025 13:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags