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A B S T R A C T

Heliostat calibration in solar tower plants is critical for optimizing plant efficiencies through precise solar
tracking. Current practices often assume heliostat precision degrades over time, leading to the development of
new calibration procedures utilizing time-dependent data sets. However, contrary to this prevailing assump-
tion, our study demonstrates the consistency of tracking accuracy over extended periods when appropriate
calibration points are selected. We introduce a novel data sampling method that uses sun positions in Euler
angles as relevancy scores, enabling higher accuracy with a reduced data requirement. Our thorough analysis
challenges the common belief that time significantly impacts calibration accuracy. Furthermore, we unveil an
overlooked relationship between prediction accuracy and solar position coverage, raising legitimate concerns
about the reliability of reported accuracies in previous publications. To promote transparency, we present
clear data and advocate for improved reporting practices in future publications. Applying the new data set
sampling to a non optimized data set we archive a year-round stable accuracy below 1.5 mrad with as little
as 27 calibration points.
1. Introduction

The efficiency of power plants relies heavily on the ability of
heliostats to accurately track the sun. Karellas and Roumpedakis [1]
estimates the maximum achievable heliostat field efficiency to 70%
under the assumption of ideal heliostat tracking but further stresses the
trade off between receiver efficiency losses due to aperture size on the
one hand and spillage losses on the other hand. The focal spot size of
each heliostat can be minimized by its concentrator’s design. However,
the combined focal spot size of the heliostat field results from the
superimposition of all individual focal spots. The minimum spillage can
thus be obtained via heliostat aim point optimization which requires
minimal heliostat tracking errors. Heliostats must therefore meet strict
tracking accuracy requirements, while also being cost-effective and able
to withstand various external factors, like wind or even sandstorm [2].

Commonly open-loop heliostat control, for instance, without con-
tinuous feedback regarding its current alignment is applied for cost-
efficiency and ease-of-implementation. Because of the lack of real-time
alignment measurements the open-loop control applies a predictive
model to estimate the current alignment from observed actuator stepper
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motor positions. Open-loop methods therefore require discrete mea-
surements of the heliostats’ behavior and modeling of their characteris-
tics. During field operation the derived model is fit to the measurements
by applying machine learning algorithms. The tracking accuracy thus
depends on the quality of model training. Heliostat calibration is there-
fore key to maintaining high tracking accuracies. The most commonly
used method is the camera-target method [3](also known as beam
characterization system).

This involves moving a single heliostat from the receiver to a target
located close by (compare Fig. 1. Due to individual errors of the
heliostat, the intended focal spot position of the heliostat may deviate
from its measured position. By analyzing this deviation, along with
the heliostat’s position in the field and the sun’s position, a heliostat
kinematic model can be fitted by regression. This model can then be
used to adjust the orientation of the heliostat and minimize its sun
tracking error. The method is highly automated and stable, although
its accuracy typically falls in the range of 1–5 milliradians. For com-
parison, the sun’s divergence is approximately 3 mr ad. These high error
margins can lead to focal spots missing the target for heliostats located
at high distance to the tower. This enforces a conservative operation
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Fig. 1. The solar tower in Jülich shown on the left and multi-focus tower shown at the right. On top of the solar tower is the receiver, where all heliostat focal spots are
superimposed. Below is the calibration target, showing a single focal spot. On top of the multi-focus tower is the secondary calibration target, also showing a single focal spot.
and can cost power plant operators millions of dollars per year [4].
Moreover,the heliostats are calibrated regularly since it is assumed that
the sun tracking accuracy deteriorate over time. This assumption is
partly responsible for the fact that time is included as a major factor
in the calibration of the heliostats [5,6]. Furthermore, based on this
assumptions old calibration data is often regarded as deprecated and
dismissed.

The camera-target method was taken up and improved by a multi-
tude of more advanced approaches, like heliostat alignment via lasers
[7] and cameras [8] or on the heliostats at night using stars or moon-
light [9], measured directly on the receiver [10] or drone flights [11].
In general, the number of published calibration methods is vast [12], in-
dicating a significant research effort towards developing and validating
analytical procedures for accurate measurements and reliable results.

Despite good published focal spot position measuring accuracies
below 1 mr ad (see [12]), none of these methods were adapted in com-
mercial power plants, so far. The camera-target method is still the most
commonly used method for heliostat calibration in commercial power
plants.

This can be explained by the risk, which power plant operators
are taking, when exchanging the calibration procedure and the well
established reliability of measurement accuracies by the camera target
methods. However, this comes at the cost of slow measuring speeds
per data point. Consequently, data point acquisition holds a high
amount of opportunity costs about deciding which heliostat to calibrate
next. However, until now, little analysis into the applied data points’
relevancies was pursued.

In this paper, we investigate the influence of different data splitting
techniques on tracking accuracies. In order to investigate their impact
on resulting calibration accuracies, a large data set gathered over two
years of operation from the solar tower in Jülich was divided into
various train/test/validation sets. The results demonstrate that for the
given data set the distribution and balance of the calibration data
set with respect to the sun angles have a more significant impact on
calibration accuracy than time or data set size, as commonly assumed
in the literature. According to our observation, we introduce a simple
metric for a conservative assumption, which assigns relevancies to all
data points within a data set based on the solar distance between mea-
surements calculated by the sun’s Euler angles (Azimuth, Elevation).
The metric can be used as a quality metric for prediction accuracy and
to make data collection more efficient. Using this metric, a tracking
accuracy below 1 mr ad with year round stability was achieved using less
than 30 data points and a rudimentary heliostat model. Thus reduce the
2 
required data set for a calibration accuracy smaller than to less than 30
data points for each training and validation.

Moreover, the findings of this investigation have implications for
numerous preceding publications, raising questions about the reliability
of their conclusions. Especially, since information about the applied
data sets is often provided sparsely.

This paper’s objective is to push the scientific community into recon-
sidering the impact of applied data sets on heliostat calibration and also
to provide advice for future publication, how to publish results and data
sets transparently and comprehensible, accelerating the deployments of
new approaches.

2. Theoretical outline

2.1. The effect of data set sampling on stated Heliostat tracking accuracies

To understand the effect of data set sampling a simple thought
experiment is conducted. First, a heliostat is considered, which does not
change over time. Second, a heliostat fitting model is used in training,
which does not perfectly cover all deficiencies of the real heliostat.
Now, considering a data set ‘‘T’’ from May 21 used for training the
heliostat model. It is tested with two different data sets. Test set ‘‘A’’
is from June 21. Test set ‘‘B’’ is from July 21. Both data sets contain
similar amounts of data collected at similar times of the day. Since
our training data set ‘‘T’’ is one month before the solstice, it has very
similar solar altitudes to test data set ‘‘B’’, which is one month after the
solstice and therefore requires the heliostat to perform almost equal
sun tracking movements. Under these circumstances, it is very likely
that the trained model will achieve a higher test accuracy when tested
with the test data set ‘‘B’’ than with the test data set ‘‘A’’, even though
it is the same model. Most of the information about the test data set
is already included in the training. Moreover, if only data from test
data A is available it can (wrongly) be assumed that the accuracy of a
heliostat decays over time. Thus the distance e.g. measured in euclidean
coordinates between the sun positions has an effect on the outcome of
the fit. In the conducted thought experiment, we find that the distance
between training and test set B is close to zero, while the distance
to test set A is greater. Vice versa it can be concluded, that if a test
data set achieves high accuracies but does not contain data with high
distances to the training data set, the accuracies are not trustworthy,
since the model has to interpolate or extrapolate less, or in a simplified
assumption, the model can use the known data as a look up table for
its tracking movements. A more detailed examination of this example
will be provided in a subsequent section.
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Fig. 2. Schematic drawing of the proposed nearest neighbor metric. The shortest
distance is measured by the sun position given in Euler coordinates. The heliostat motor
positions can be used as well, but do not provide comparability between publications.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

2.2. K-nearest neighbors metric

To take the thought experiment into account, we introduce a data
point relevancy metric based on the euclidian distance of the training,
test and validation set, the k-NN distance and demonstrate a correla-
tion between model tracking accuracies and the suggested metric. In
regression tasks, the basic goal of machine learning algorithms, is to
enable computer systems to learn to discover patterns, relationships,
or insights, such as parameter estimations, from data and use them to
make accurate predictions. To cover all relevant patterns to a specific
task, the training data set should contain samples over the given task’s
entire range of characteristics. If data points are not equally distributed
over all behavior domains, a data set imbalance arises [13,14]. In
case of an imbalanced data set, the data points can be sampled into
an overrepresented majority group and an underrepresented minority
group. Generally, the information of minority data points is less covered
and thus more relevant. The difficult part for multi-dimensional data
points and often unknown pattern distributions is to formulate a data
point relevancy function over all dimensions.

We suggest handling the heliostat calibration as a regression over
the parameter space, sun position, heliostat motor positions and target
point to determine and correct the orientation of the heliostat. While
the aimpoint is rather static and most often only swaps between opera-
tional and calibration target, the solar position changes continuously
and thus is the more determining input. The solar position can be
quantified either as date and time or as an Euler vector.

Since the solar position directly correlates with the heliostat’s sun
tracking and thus its actuator movements, solar positions relevant to
the heliostat’s operation can be regarded as indicators for behavioral
patterns.

In this publication we apply the Nearest Neighbor (NN) distance
metric to split our data set into training, validation and test set (com-
pare Fig. 3). The NN [15] is computed as the minimum euclidean dis-
tance between a measurement’s solar position, represented by azimuth
and elevation to another measurements solar position. For evaluation,
we also employ k-NN with 𝑘 = 1, 2, 3..., 𝑘 ∈ N, since they suite different
purposes. For example, the 1-NN metric measures the distance from
each measurements sun position to its nearest neighbor (Fig. 2, red
line). The 2-NN metric also considers the second nearest neighbor and
adds it to the 1-NN distance (red and green line). Higher k-NN orders
take into account that, while several measurement points may cluster
at one location, the cluster itself may be separated from the other
measurement points. Here, the k-NN behaves like a regional density
probability metric. A data point’s probability is reversely proportional
to its relevancy. The ‘‘distance’’ of two points to each other is computed
over the sum of the 𝑘 points 𝑖 of minimal distance to the regarded point.
3 
For multi-dimensional data points, the squared distance is obtained
by the data points’ scalar product. By applying the k-NN Metric on a
data set, it can be sorted by the solar positions to each other. A k-NN
based data set sampling sorts the existing data by the sun distances
and, by first selecting data points of smaller distance as training data,
makes it easier to learn the features in the training data set, harder to
predict the validation data and hardest to predict the test data set. Since
the test data set contains data with the highest range of inter- and/or
extrapolation it can also be treated as a conservative assumption of the
heliostat’s accuracy over the year.

To create the k-NN data set sampling, first all data points are sorted
by their k-Nearest Neighbor sun distance to any other available sun
position. Then, the 𝑁𝑡𝑒𝑠𝑡 data points of highest distance are selected as
testing data points. Thereafter, out of the remaining data points, again
the 𝑛𝑣𝑎𝑙 data points of highest distance are chosen as validation data.
The training data set is constructed from the data that is not selected
as testing or validation data. If not all remaining data is selected
to construct the training data set, data points of high distance are
prioritized. This should ensure, that testing data is hardest to predict
and thus is a reliable indicator for the trained models performance on
all other data points that have a shorter distance to the training data.
The algorithm for creating the data set is shown in Fig. 3.

k-NN(𝑥, 𝐷) =
( 𝑘
∑

𝑖=1
‖𝑥 − 𝑑𝑖‖

2

)

1
2

𝑑𝑖 ∈ 𝐷 (1)

Whenever a ‘‘distance’’ is referenced within this paper the equation for-
mulated in Eq. (1) between data point 𝑥 and data set 𝐷 is applied. This
metric is closely related to the Split data set sampling by Joseph and
Vakayil [16]. However, we use a simplistic approach, as e.g. we do not
include angles between nearest neighbors, location in the distribution
(center or edge) or weighting differences of azimuth and elevation.

2.3. Comprehensive heliostat model

The actual alignment of a heliostat is a combination of different
static and dynamic errors (see upper half of Fig. 4). Common models
begin with an orientation represented by 𝑓 ∗, which is derived from
an ideal model based on the angles of the motors used (𝜈 and 𝜏).
Deviations from this model are typically described by static parameters
(𝑓 ). Additionally, errors dependent on the heliostat’s orientation are
denoted by (𝑓 ). Apart from these inherent factors, external influences
like wind (𝑔), temperature (𝑘), time (𝑘), or other disturbance factors
(𝜖) can also be considered.

We test our method with a gradient-based regression of well-known
machine learning techniques. For this purpose, we have created a
comprehensive differentiable heliostat model (see lower half of Fig. 4).
The model was first proposed by Pargmann et al. [17]. The heliostat’s
physical behavior is represented by an alignment model. The alignment
model’s foundation is a rigid-body kinematic system as it is commonly
used in literature [18–26]. This model takes actuator positions 𝑎𝑥
as inputs and computes the corresponding concentrator plane normal
orientation 𝑛 and origin 𝑜 as outputs. These outputs can then be
combined with solar directions to compute the heliostat’s reflective
behavior. Our model is able to map all two axis heliostats and thus all
mentioned models. It is inspired by (differentiable) robotic operating
systems (ROS), where each joint forms the origin of a new coordinate
system. Each coordinate system can be rotated and translated around
all three axes but is part of the coordinate systems chain and thus has
six degrees of freedom. Furthermore, manipulating a parent coordinate
system affects all its child systems. Using this approach not only allows
computation of a heliostat’s alignment in global coordinates from its
actuator configuration but also to use the coordinate system’s inverse
principle to gain the actuator configuration from a given target align-
ment. Therefore, each heliostat has two actuated coordinate systems
at each joint plus an additional coordinate system at its concentrator’s
center point. Each actuator is modeled with 5 optimizable parameters,
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Fig. 3. Visual representation of the algorithm to apply the k-NN data set sampling.
Fig. 4. Our kinematic model consists of an ideal heliostat behavior, which can be distorted by up to 28 deficiency parameters (static behavior). Each of these parameters can
additionally be modeled by dynamic functions (dynamic behavior).
adding a total of ten more degrees of freedom to the model. Taking all
degrees of freedom into account, this results in 28 possible parameters
for optimization. Moreover, each parameter can be modeled by its own
function to simulate dynamic heliostat behavior. This can be e.g. a
polynomial function, a differential equation or even a neural network.
The latter was used in [17] to achieve very high accuracies on small
data sets. The model is to our best knowledge universally applicable
for all kind of two-axes heliostats and deficiency sources. It is written
entirely in Pytorch, so the training of the model profits from highly
GPU optimized linear algebra. The entire model will be made publicly
available.2

3. Measurement data

To analyze the effect of different data set splitting methods on
reported results, a calibration data set from the solar tower in Jülich
was used, which was collected using the camera-target method. It was
chosen because, at the time of this work, it was the largest data set

2 https://github.com/ARTIST-Association/ARTIST
4 
available in the field, with almost 500 measurements, and thus offered
the most flexibility. All data points were collected during fully auto-
mated daily power plant operations, and no additional measurement
campaigns were conducted for this publication. However, there are
some measurements taken outside of the daily routine. These mea-
surements were obtained during multiple days of continuous heliostat
tracking observations in July 2021. As no further information about
this measurement campaign is available, the data must be considered
separately. The data set is shown in Fig. 5.

In the upper panel, the measurement data is structured chronolog-
ically, and a training (yellow stars), test (red squares) and validation
(blue dots) data set splitting is applied, as it would be used at the solar
tower and according to literature (Refs. [5,27], and Smith and Ho [28]).
A significant number of data points were obtained during the summer
months in 2021 due to favorable weather conditions. The sampling
assumes that the difficulty of the prediction increases with time. While
the validation set should still be well predictable, the test set should
already cause significant difficulties, due to the temporal distance of
over three months.

In the lower panel, the same data is shown in Azimuth-Elevation
representation using the same temporal sampling as the upper panel.

https://github.com/ARTIST-Association/ARTIST
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Fig. 5. Measurement data from the solar tower in Jülich, gathered by the camera-target method. The upper panel shows the measured data set chronologically using a temporal
training–evaluation–test sampling. The lower panel shows the same sampling, but plots the measurement data depending on the sun position.
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The measurements from summer 2021 cluster here as well, but it
ecomes apparent in this representation that the measurements taken

in July have a high overlap with the test and validation set. The
information on how the heliostat should be aligned to the sun positions
in the test set is therefore (at least partially) already contained in the
training data.

Due to the size of our data set, we will test the effect of time and
euclidian (k-NN) splitting as well as the effect of the size of the training
data set. The dataset itself will be available, so additional hypotheses
can be tested in further research.

4. Results

4.1. Proof of concept using a single data point

First we want to test whether time or solar distance has the greater
nfluence on the test accuracy. To achieve this,we used the geometric

model described before and trained it on a single data point and vali-
ated the remaining points based on their NN distance to the training
oint. Because this paper’s focus lies in evaluating the impact of cali-
ration point distribution on the achieved tracking error, the applied
odel’s impact on the result is regarded as a constant factor and the

racking error change between different data set splits is discussed. For
valuation the tracking error is used, which is defined as the angle 𝛿𝑡𝑟𝑎𝑐 𝑘
etween the predicted 𝑛𝑝𝑟𝑒𝑑 and the measured concentrator alignment
ector 𝑛𝑎𝑐 𝑡𝑢𝑎𝑙 of the heliostat [17] by 𝛿𝑡𝑟𝑎𝑐 𝑘 = ar ccos 𝑛𝑝𝑟𝑒𝑑 ⋅𝑛𝑎𝑐 𝑡𝑢𝑎𝑙

‖𝑛𝑝𝑟𝑒𝑑‖∗‖𝑛𝑎𝑐 𝑡𝑢𝑎𝑙‖ .
Fig. 6 shows the measured data set collected in Jülich. The upper

graph shows the data points sorted by their time of measurement. The
graph in the middle shows a representation in Euler angles. The color
n all plots indicates the time of the measurement. The radius of the

circles is directly proportional to the tracking error achieved for each
individual measurement in the test data set.
 a

5 
Both the time-dependent and Euler-angle plots in the upper sec-
tion indicate a steady increase in error with increasing temporal or
patial distances, which is consistent with e.g. [5] claim that time
s a crucial parameter for calibration. However, some predictions in

the time-dependent plots are very accurate despite the huge time
distance. Moreover, in the Euler representation very close distant sun
positions result in similar predictions, despite the temporal distance.
The lower plot supports this observation and contradicts [5]’s claim. It
suggests that time has only a marginal impact on the results. This plot
illustrates the relationship between the distance to the training point
and the prediction accuracy. As expected, the accuracy reduces with
increasing distance to the training point. Moreover, the dependency can
be assumed as linear. Measurements separated in time do not show any
noticeable trend of increasing inaccuracies due to increasing absolute
temporal differences.

4.2. Statistical evaluation on data set sampling with constant splits

When the training set includes more than one data point the eval-
uation can only be assessed statistically, since local distribution effects
ecome of higher relevance to the prediction accuracy.

To conduct our analysis, we used a subset of 110 data points. The
first 60 data points, arranged in chronological order, were selected
for training the model, followed by the next 30 data points for model
alidation, and the subsequent 20 data points for testing. After com-
leting the initial round of training and testing, we modified the data
et by removing the oldest day and adding data from the following days
ntil the data set once again contained 110 data points. By repeating
his process, we were able to assess the performance of the heliostat
cross different seasons, while ensuring that the data set size remained
onstant throughout the analysis. Then, the model was trained with
ifferent training–validation–test partitioning using a time-dependent,
nd 1-3NN sampling. In Fig. 7 the achieved accuracies of all subsets
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Fig. 6. Training with a randomly chosen data point (yellow star). The upper plot exhibits the validation data arranged chronologically, whereas the middle graph showcases their
Euler coordinate representation. Both plots demonstrate an increasing prediction error with greater distances in time or space (indicated by the circle size). The color indicates
the time of the measurement in between the earliest and the latest data point in the set. The lower plot exhibits a significant correlation between spatial distance and prediction
accuracy, characterized by a linear relationship, with the training data being placed at both axes’ origins. Conversely, no discernible temporal pattern can be observed in the data.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Frequency of achieved accuracies in dependence to the test set distance. For Time the distance is measured temporal, for the other sets spatial.
divided by the mean distance of the subsets validation set to the
training set is plotted against their frequency. For the spatial data set
sampling (1-3NN) this is done by the spatial- and for the time depended
sampling by the temporal-distance.

As can be seen, all three spatial data set sampling achieve a normal
distribution different from zero very close to each other. This indicates
a linear slope with some scattering due to measurement uncertainties
6 
and local minima in the regression. The time dependent sampling
centers around zero, so we do not see any temporal dependency.

Based on the preceding analysis, it can be inferred that the sun
position distribution has a greater relevance to the tracking accuracy
than time. However, the influence of time cannot be ruled out. In order
to further explore the time influence, the first 60 data points were
used as training data, the following 20 points as validation data and



M. Pargmann et al.

w

t

c
c

a
p
a
a

Solar Energy 286 (2025) 113094 
Fig. 8. Training with a time-continuous amount of 60 data points for training and 20 for validation. All other data points are then used for testing. An arbitrary cosine function
ith a frequency of one year is plotted, referencing seasonal changes.
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all other points as testing data. Thus all training and validation data
was selected from summer data, while the testing data is distributed
over the entire year. The upper plot of Fig. 8 illustrates the trained
model’s prediction accuracies. As expected, validation and training
data points are predicted most accurately. The prediction results on
he test data set, in contrast are of higher variance. One distinctive

feature of the resulting accuracies is a sinusoidal behavior over time
with time spans of high and low prediction accuracies. This behavior
an be explained by the sun’s relative position over the year. For
omparison, we added a cosine function plot with frequency of one

year and an arbitrary amplitude to Fig. 8. The cosine was shifted to
match the position of its negative amplitude to the first day within the
testing data set. As can be seen, the prediction accuracies’ behavior
resembles the seasonal curve. Furthermore, prediction accuracies for
summer data are generally better than those for data in winter months,
due to the fact that training took place in summer. Data points that
are separated by a difference of one year show similar results, except
for the aforementioned measurement campaign, that performs slightly
better. Due to winter months having lower solar elevations and thus
greater distances to the training data, the seasonal behavior can also be
observed within the data points distances. This is shown in the lower
plot of Fig. 8.

It should be noted, that independent of the partitioning metric,
ccuracies between 0.1 and about 10 mrad were achieved. Other sam-
lings of the data set may result in even higher variances. A published
ccuracy can therefore only be reasonably evaluated in connection with
 corresponding spatial distance to the training data set.
N

7 
4.3. Model behavior on different training set sizes

We conducted further analysis to investigate the impact of data set
size on heliostat calibration quality, after excluding time as the main
arameter. For this, we trained different models on various data set
izes using 3-NN data set sampling. We used a model with 6 parameters
Static 6), which utilized the same parameters as those used in Jülich.
dditionally, we used a model with 20 free parameters (Static 20) and
 model with intermediate number of parameters (Static 14).

Fig. 9 shows the mean test accuracy plotted against the data set
ize for these models. The prediction accuracy increases rapidly until 25
ata points and then continues to increase until around 100 data points.
eyond that, the accuracy remains relatively constant or decreases
lightly. The best accuracy of 1.7 mr ad is achieved by the Static 20Model
t 100 data points.

The plot below also depicts the mean NN distance from the test to
the training data set plotted against the data set size. The curve’s shape
is strongly correlated with the prediction accuracies. When the k-NN
value stops decreasing, the accuracy also plateaus. Furthermore, adding
more data without reducing the NN distance makes the data set more
imbalanced, ultimately reducing accuracy.

From this we can deduce, that the data set size is secondary. A well
alanced data set, which reduces the NN-Distance the most, can achieve
ar better results than a larger unbalanced data set with close packed
ata points of low NN distance and thus relevancy.

Fig. 9 only showcases the mean value of the complete test data set.
To present the full information of how well the algorithm behaves each
ata point should be depicted individually as it is done in Fig. 10. Here,

the best result from Fig. 9 using 100 training data points using the 3-
N sampling are shown. The transparent circles with gray boarders
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Fig. 9. Training accuracies of geometric models using different amounts of free parameters (upper plot). Every stated accuracy is connected with a distance to the evaluation data
set (lower plot). This link allows a quantitative comparison between stated accuracies from different data sets. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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indicate an accuracy of 1 mr ad as reference, while the colored circles,
hanging in size indicate the predicted accuracies. The circles’ radii
inearly increase with the prediction error. It easily becomes apparent,
hat the data points, inside the region of the training data distribution

are very well covered, while the prediction accuracy is strongly reduced
t the edges. This is to be expected, due to the higher amount of
xtrapolation. Despite the rather high mean prediction error of 1.7 mr ad
compare Fig. 9) the plot indicates clearly, that the heliostat behavior
ill be reliable throughout the year, maintaining or exceeding the

reported accuracy, except for minority data points (e.g. in early morn-
ings). This can also be reduced by intentionally adding more training
data to a minority domain.

4.4. Data point selection based on distance

In Fig. 6 an approximately constant behavior of the heliostat up to
a radial distance between training and testing data of 0.17 r ad can be
seen. Thus, for the heliostats in Jülich a prediction in this region is
as good as the accuracy reached in training. The same characteristic
can be concluded from Fig. 9, which indicates that most performance
improvements were gained until an average distance below 𝑅𝑟𝑒𝑔 𝑖𝑜𝑛 =
0.25 r ad was achieved between training and testing data. Given 𝑅𝑟𝑒𝑔 𝑖𝑜𝑛
we can compute an upper limit for the required amount of calibration
points for each heliostat by 𝑁𝑐 𝑎𝑙 𝑖𝑏 = 𝐷𝑎𝑧𝑖𝑚

𝑅𝑟𝑒𝑔 𝑖𝑜𝑛⋅2 ⋅ 𝐷𝑒𝑙 𝑒𝑣
𝑅𝑟𝑒𝑔 𝑖𝑜𝑛 for a heliostat’s

operation ranges in azimuth and elevation 𝐷𝑎𝑧𝑖𝑚 and 𝐷𝑒𝑙 𝑒𝑣. A partial
verlap of the created regions is required which is indicated by the
levation only being sampled by the regions’ radius while the azimuth
s sampled by their diameter. For Jülich this would result in approx.
𝑐 𝑎𝑙 𝑖𝑏,𝐽 = 4.2

0.25⋅2 ⋅
1.05
0.25 = 36 data points. The thus required solar positions

an furthermore be pre-determined and calibration campaigns sched-
uled throughout the year. The time span between required calibration
8 
days 𝐷𝑑 𝑎𝑦𝑠 can be computed by 𝐷𝑑 𝑎𝑦𝑠 = 𝑅𝑟𝑒𝑔 𝑖𝑜𝑛
𝐷𝑒𝑙 𝑒𝑣 ⋅ 365 day s for a known

maximum solar elevation 𝐸 𝐿𝑚𝑎𝑥 at the given location and between the
ours per day 𝐷ℎ𝑜𝑢𝑟𝑠 =

𝑅𝑟𝑒𝑔 𝑖𝑜𝑛
𝜋 ⋅24 h. For the given 𝑅𝑟𝑒𝑔 𝑖𝑜𝑛 this would result

n approximately 87 day s between calibration days and every 114 min
per day.

The real operational range of a heliostat however is more restricted
due to the sun’s movements not covering the square assumed above.
To estimate the required data points an algorithm was applied that
selected a calibration point as training data point when the distance
to its nearest neighbor within the already selected training data points
xceeded the given region size of 𝑅𝑟𝑒𝑔 𝑖𝑜𝑛. Fig. 11 visualizes the resulting
ata set split. All training data is shown in blue with surrounding
lue regions of 0.25 rad radius in the azimuth-elevation plot. As far as
ossible, given that the available data set was not collected according
o the suggested algorithm, the entire angle range is covered by the
urrounding 27 training regions. The validation data, shown in green,
s selected equally. All other data is selected as testing data, shown in
range. Two validation data points at the outer edges of the azimuth
ange appear show significant deviations from the average prediction
erformance and might be outliers. All testing data is predicted at
n accuracy below 1.5 mrad. The achieved tracking error appears to
utperform the results indicated in Fig. 9, where 100 calibration points
chieved an accuracy of 1.7 mr ad. The algorithm applied in Fig. 9

however ensured that the distance between training and testing data
was maximized, thus making it harder for the model to achieve good
prediction accuracies. The region based training data point distribution
in comparison is designed to restrict the maximum distances between
the training and testing datasets to a limit that was found to enable
the model to make accurate predictions and therefore must result in an
apparently better performance due to the easier to predict testing data.
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Fig. 10. Transparent illustration of the used train–test–validation sampling while
indicating the prediction error of the test-set error. The size of the circles is proportional
to the tracking error. The colorless circle represents a tracking error of 1 mr ad and
is intended to provide a simple estimate of how good the prediction was. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

5. Implications

In this work, we investigated different data set sampling methods by
applying them to a data set containing calibration data from 2 years of
operation. In this context, we conducted the following claims

1. The proposed metric based on the euclidian distance of the
training and test data set to each other can be taken as a
good performance indicator for evaluation tracking accuracies.
In particular it is better suited than any tested time dependent
metric

2. A time dependent split can be misleading when presenting track-
ing accuracies.

3. A comparison between different calibration methods without
detailed knowledge about the data set and the sampling methods
used can lead to misleading conclusions (as observed in [12]).

From the before stated claims we can also derive potential criteria for
the selection of calibration points per heliostat:

1. The solar distance (e.g. Nearest Neighbor) to already collected
calibration points

2. The heliostat movement operating range coverage with calibra-
tion points, that may also be indicated by solar position regions
(e.g. 0.25 r ad) for the heliostats in Jülich.

3. While we cannot rule out temporal impacts for other heliostats,
we cannot observe any on the data available to us. Further
investigations should be considered by the community who has
access to data of other heliostats.

In the next section, we assume that all of these points, including the last
two, hold true for other heliostats as well, even if the approximation of
independence in time and the trust region might only apply to smaller
intervals.
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5.1. Implications on literature

Depending on the distance between training and test data set, more
or less information about the prediction task is already included in
the optimization process and influence reported accuracies. In the
following we investigate already published heliostat models and use
the proposed metric to analyze the reliability of the stated accuracies.
All stated calibration point positions are estimations reconstructed
from the provided information within the given publications, using
an acknowledged solar positioning algorithm [17] where necessary to
transform time data into solar positions. Stated distances and visualiza-
tions are therefore subject to estimation errors due to a lack of provided
data within the publications, but should be sufficiently reconstructed
to indicate a lack of reliable data set selection methods within the
publications. The results of this comparison are summarized in Table 1

1. Khalsa et al. [27] trained their model on data collected between
12:30pm–4:40pm on June 16 and 9:30 am and 3:55 pm on June
17, 2011 at an interval of 15–30 min and evaluated on data of
July 15, 2011 12:53pm to 4:30pm at an interval of 3 to 4 min.
The authors also stated environmental conditions during their
measurements. For plotting, they chose a data representation
using hours as the 𝑥-axis. A training data set size of (250 min
+ 385 min) / (15–30 points/min) was stated, equaling roughly
30 data points. We used the given information to derive a
representation in Euler angles (Fig. 12(a)). Although the training
and evaluation set is clearly separated in time, both training
and testing data was taken close to the summer solstice and at
the same time of day. The mean distance of the test set to the
training set is 0.072 rad.

2. Smith and Ho [28] evaluated their model on a major time
difference of six months. Training data was collected between
August 9–27 2012, October 22–29 2012 and February 4–5 2013.
Two testing campaigns were completed between October 30 to
November 1 2012 and February 12–27 2013. Data per heliostat
was collected every other day at 1 h intervals. The corresponding
Euler representation is shown in Fig. 12(b) The authors waited a
very long time to evaluate their model, that could have resulted
in a mean distance between test and training data of 0.132 rad.
However, it is evident that despite a significant time difference
between October and February, the solar angles remain similar
due to their proximity to the equinox. Due to the one training
day in February, the mean distance to the training data set is
greatly reduced to 0.082 rad, also affecting the reliability of the
method.

3. The study conducted by Nadia AL-Rousan and Desa [5] utilized
the amount of data as the 𝑥-axis. However, due to the absence
of time information, an azimuth/elevation representation could
not be derived. It can be inferred that the measurements were
conducted between December and June, over a period of ap-
proximately 15 days. The data set consisted of 153 training
samples, and a train/test sampling ratio of 70:30 was employed.
Nonetheless, it was not clear how the separation between the
sets was performed, as the different subsets were not labeled
in the accompanying plots. Although the authors provided a
precise description of their experimental setup, the presentation
of their data by considerations of this paper’s indications was
insufficiently transparent, which hindered the reproducibility of
their findings. Considering the use of degrees (instead of mrad)
in the 𝑦-axis and the limited information about the data set,
further investigation is required to assess the suitability of the
reported accuracy for practical applications on solar towers.

4. Pargmann et al. [29] used a similar representation as [5]. How-
ever, the 𝑥-axis also states the exact date of measurement. Data
was used from the end of July to the mid of August for train-
ing, and tested on data starting at the end of August to early
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Fig. 11. Achieved pre-aligned model predictions on the 2022 AJ.23 after being trained and validated on data points selected by the data point sampling based on regions. The
upper subplot shows the data points’ time of creation distribution plotted by hour over date. The lower subplot shows the data points’ solar position distribution plotted by solar
elevation over solar azimuth. The sampling regions are indicated as transparent blue areas. Prediction accuracies are indicated by the data points marker sizes. The larger the
marker, the higher the prediction error. Reference markers (gray circles) are added to each data point indicating a reference prediction accuracy of 1 mrad. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Sun angles selected for training, validation and testing derived from different publications. The upper row represents the temporal representation, the lower the
representation in Euler coordinates. Data was taken from the publications of Khalsa et al. [27], Smith and Ho [25] and Pargmann et al. [29].
Table 1
Tracking accuracies with high precision from different publications, which will be discussed later. Even lower accuracies can be found in literature [12].

Khalsa et al (2011) Smith and Ho (2014a) Pargmann et al (2021)

Accuracy 0.1 mr ad–0.4 mr ad 0.78 mr ad–1.5 mr ad 0.42 mr ad
Dataset size (Train/Validation/Test) approx. (30/60/−) Split not clear for best accuracy approx. (300/175/25)
1-NN Distance 0.072 r ad to validation set 0.082 r ad to validation set 0.09 r ad to test set
February. In Fig. Fig. 12(c), the sun positions used for training
are determined on the basis of the information given in the
paper. The mean distance between testing and training data set
is 0.121 rad, between validation and training data set is 0.09 rad
and between testing and validation data set is 0.026 rad.

These publications did not publish their datasets, did not provide
complete information about dataset size or splitting methods, or did not
use a three-part dataset, which are important considerations in meeting
machine learning standards. However, they provided enough informa-
tion to reconstruct at least parts of the missing data. Additionally, some
10 
publications (as summarized in [7]) provide limited information, which
poses challenges for reconstructing their methods and fully interpreting
their results.

The mean distance between the training and test sets of the men-
tioned publications falls between 0.072 rad and 0.0121 rad. This in-
dicates that the test distances are significantly lower than the range
associated with constant behavior in our findings, which may affect
the validity of their reported accuracies. To illustrate this by another
example. If we take our data set and enlarge the training data set by
adding more points until the kNN distance to the test set hat fallen to
0.07 rad, we can completely dispense with a geometry model. Instead,
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to predict a point in the test data set, we take the next two data points
in the training set in elevation and azimuth direction and interpolate
the motor steps linearly. With this very simple method, we obtain a
rediction accuracy of 0.35 mrad. While this simple method yields

better results than those reported in [25,27], and [29], it may not
maintain performance over an entire year and could face challenges
in practical power plant operations. For different types of heliostats,
this linear range can be smaller; Based on our analysis of the Jülich
eliostats, the quality conditions we derived highlight areas where
hese publications may not fully align with our suggested standards.

An interesting case occurs when examining the data set used by
Smith and Ho [25]. The kNN metric for this publication produces
omparable results to those observed in the other publications. How-

ever, an examination of the azimuth and elevation plots reveals that a
training–test split with larger distances could have been conducted by
clearly delineating the winter and summer data sets. Instead, individual
points in winter fall within the training area. By selecting this split,
the tracking accuracy could be significantly higher than what would be
achieved over the course of the year. To address such special cases, a
epresentation similar to Fig. 10 would be beneficial and could enhance

future publications.

5.2. Implications on upcoming publications

From the results presented in this paper and the analysis of previous
publications, 3 conclusions can be drawn.

First, we highly recommend to present calibration data in upcoming
publications using a presentation alike Fig. 10 using the proposed
azimuth/elevation representation.

Second, accuracies should be linked to a corresponding distance to
the training set as in Fig. 9. Although the distance might not be the only
omain coverage criteria, it is a good, easy to implement quantitative
ndicator.

Third, we also recommend utilizing a 3-sampling strategy for train-
ing/evaluation/testing, which is not extensively covered in the litera-
ture on evaluating the accuracies of calibrated heliostat models.

5.3. Implications on the calibration

Taking into account the stated criteria for heliostat calibration point
selection from subsection,

a data set for each heliostat can be gathered, spanning over all pos-
sible sun positions on just 4–5 measurement days under the assumption
of a approximately constant behavior region of 0.25 r ad, which can be
planned in advance. Considering such a data set and our results in this
publication, we expect a rather constant heliostat behavior for the next
years. In our investigation, as depicted in Fig. 11, implementation of
his approach has yielded a year-round accuracy below 1.5 mr ad using
nly 27 calibration points. Notably, this level of precision surpasses that
f alternative data set partitions tested, despite employing significantly
ore data. It should be noted, that the amount of calibration measure-

ments can still be reduced by collecting the data applying utilizing the
kNN Metric as follows:

• Initiate calibration by recording the current sun position.
• Determine the next heliostat for calibration based on the rele-

vancy score of available data points to the current sun position.

Although clustering of measurement points remains feasible, its inci-
dence diminishes. Moreover, establishing a minimum nearest neighbor
(NN) distance serves to mitigate clustering further.
 u
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5.4. Implications on calibration at the solar tower in Jülich

The kNN algorithm was implemented at the solar tower in Jülich
for the purpose of collecting new calibration points. Prior to the im-
plementation of the algorithm, approximately 230,000 data points
were collected at the solar tower and utilized for calibration purposes.
With this considerable number of measurements (approximately 100
per heliostat), the field exhibited a tracking error of approximately
2 mr ad. Following the introduction of the new algorithm, this value
decreased to around 1.7 mr ad within a month, without the necessity for
an additional measurement campaign.

5.5. Implications on daily power plant efficiency estimation

Our study shows that the accuracy of heliostats is mainly affected
by the position of the sun, rather than time. This crucially affects the
prediction accuracy of heliostats for upcoming years. Since the time was
mistakenly considered as the primary determinant, the accuracy of a
heliostat for the following year could only be estimated coarsely. How-
ever, since heliostat accuracy is primarily reliant on the sun positions,
recise predictions can be made for any given day of the (next) year, by
nserting corresponding sun angles as lines in Fig. 10 and interpolating

the values of the evaluation data set. Approaches to this already exist
in [30] The proposed approach yields more accurate predictions than
sing the mean accuracy.

6. Conclusion & outlook

In this research, we introduced the widely used k-NN algorithm to
the field of heliostat calibration and explored the influence of different
data set sampling strategies on the achieved accuracies Our study has
revealed the crucial role of solar position coverage in determining the
relevancy of heliostat calibration data points, surpassing the previously
presumed significance of time or data set size. Notably, we found for
the heliostats in Jülich that time only has a marginal influence on their
precision, while an excessively imbalanced data set can be detrimental
in worst-case scenarios. Moreover, we found a sphere around training
points where the heliostat behaves linearly, so linear interpolation can
chieve accuracies below 0.35 mrad as long as the prediction is inside
his range

In the second part of the paper we assume that other heliostats
behave of different data sets similar to those of the heliostats in
Jülich. Under this assumption, many publications in literature do not
provide reliable results, since their test data set is inside the sphere
of linear behavior. While previous publications have advanced the
understanding of heliostat calibration, there are areas where additional
transparency regarding data sets and sampling methods could enhance
reproducibility and comparability. By providing detailed information
about data set sizes, splits, and adopting standard machine learning
practices, future studies can build upon this foundation more effec-
tively. To prevent these issues in the future, we recommend using the
k-NN-distance as a quality-assurance metric, which should always be
disclosed alongside published tracking accuracies. This, combined with
the presentation of data set and results as demonstrated in this work,
facilitates comprehensible and comparable outcomes across different
calibration approaches and helps avoid errors in subsequent studies.

We found k-NN to be a reliable and simple to understand metric
to estimate a calibration points accuracy. However, already from our
observations it became clear, that there is no linear dependency be-
tween k-NN and the prediction error if more than one training data
point is applied. This indicates that k-NN on solar positions might be a
good basis for future research into heliostat calibration point relevancy
scoring algorithms. More sophisticated classification algorithms could
potentially outperform the k-NN metric as a relevancy indicator.

The potential to calibrate a heliostat with minimal data – around
0 points – while maintaining high accuracy and long-term stabil-
ty presents a significant opportunity for the future of CSP technol-
gy. However, the question that remains open is which model will
ltimately deliver the highest accuracy.
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