elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Endemic states of integro-differential equation-based disease models

Tritzschak, Hannah (2025) Endemic states of integro-differential equation-based disease models. Masterarbeit, University of Bonn.

[img] PDF
16MB

Kurzfassung

As recently demonstrated by the SARS-CoV-2 pandemic, infectious diseases may have a huge impact on society. Mathematical models of infectious diseases allow to predict their behaviour. This process makes it easier to plan mitigation actions. Moreover, by studying the long-term behaviour of a model mathematically, one can see when disease dynamics start to stabilize around an equilibrium or under which circumstances the disease dies out. Our contribution is the study of an IDE-based model with varying population size which does allow for endemic behaviour. In order to derive an endemic model based on integro-differential equations, we will include the possibility of natural birth and death in a model similar to the one presented in Wendler et al. (2026). Compared to other IDE-based models, this model is rather complex, also allowing for disease death. The fact that we have a varying population size influenced by both the natural birth and death rate, as well as the disease-induced mortality, make the model analysis more involved. Moreover, the definition of equilibria is unclear when considering non-constant population size. In order to study the model behaviour independently of the population size, we will introduce a normalized version of our model. While this technique was already applied to ODE-based models, this seems to be a novel approach to IDE-based models. As a main result, we show the stability of the disease-free equilibrium whenever the reproduction number is smaller than one. Moreover, we derive conditions under which the disease-free equilibrium becomes unstable for a reproduction number larger than one.

elib-URL des Eintrags:https://elib.dlr.de/217680/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Endemic states of integro-differential equation-based disease models
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tritzschak, HannahHannah.Tritzschak (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorKühn, Martin JoachimMartin.Kuehn (at) dlr.dehttps://orcid.org/0000-0002-0906-6984
Datum:Oktober 2025
Open Access:Ja
Seitenanzahl:86
Status:veröffentlicht
Stichwörter:infectious diseases, endemic, integro-differential equations, integral equations, MEmilio, numerical simulation, long-term behaviour
Institution:University of Bonn
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Aufgaben SISTEC
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie > High-Performance Computing
Institut für Softwaretechnologie
Hinterlegt von: Kühn, Dr. Martin Joachim
Hinterlegt am:15 Okt 2025 14:41
Letzte Änderung:15 Okt 2025 14:41

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.