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1 Introduction

As recently demonstrated by the SARS-CoV-2 pandemic, infectious diseases may have a huge
impact on society. Mathematical models of infectious diseases allow to predict their behaviour.
This process makes it easier to plan mitigation actions. Moreover, by studying the long-term
behaviour of a model mathematically, one can see when disease dynamics start to stabilize
around an equilibrium or under which circumstances the disease dies out.

Often, ordinary differential equation models, also called ODE-based models, are used to describe
and study the behaviour of infectious diseases. Mathematically, ordinary differential equations
are well understood, and there are many numerical solvers to handle them. However, these
models assume exponentially distributed stay-times in the infected states, which was found to be
rather unrealistic according to [I, 2, [3]. Models based on integro-differential equations, also called
IDE-based models, generalize ODE-based models and allow for arbitrary stay-time distributions.
In 1927, Kermack and McKendrick presented their integro-differential model [4]. Over the last
decades, many models based on the Kermack and McKendrick model were published, see for
example [5, 6l [7], 8, 9].

Previously, the analysis of models based on integro-differential equations focused on the short-
term effects. On the other hand, for models based on ordinary differential equations, many
results on the long-term behaviour, such as the stability of equilibria, are available, see for
example [10, 11l 12]. Furthermore, the results on the long-term behaviour of models based
on integro-differential equations are usually restricted to models without disease deaths and
assuming constant population size [13] [14].

Our contribution is the study of an IDE-based model with varying population size which does
allow for endemic behaviour. In order to derive an endemic model based on integro-differential
equations, we will include the possibility of natural birth and death in a model similar to the
one presented in [I5]. Compared to other IDE-based models, this model is rather complex, also
allowing for disease death. The fact that we have a varying population size influenced by both the
natural birth and death rate, as well as the disease-induced mortality, make the model analysis
more involved. Moreover, the definition of equilibria is unclear when considering non-constant
population size. In order to study the model behaviour independently of the population size,
we will introduce a normalized version of our model. While this technique was already applied
to ODE-based models, this seems to be a novel approach to IDE-based models. As a main
result, we show the stability of the disease-free equilibrium whenever the reproduction number
is smaller than one. Moreover, we derive conditions under which the disease-free equilibrium
becomes unstable for a reproduction number larger than one.

The thesis is structured as follows. In Section [2| we will start by introducing our model. We
will first define a model without the possibility of natural birth and death and then extend it
by adding the birth and the death rate to the model formulation. As already mentioned, we
will then introduce a normalized model version in order to analyse the equilibria. Then, in
Section 3] we will analyse the long-term behaviour of the model. Therefore, we will introduce
some parameters that indicate the behaviour of the disease, such as the concept of reproduction



numbers. Then, we compute the equilibria and analyse their existence in dependence of the
parameters computed before. Afterwards, we analyse the stability of the equilibria that depends,
for example, on the size of the reproduction number. Finally, we will comment on the behaviour
of the population size. In order to analyse the model numerically we will introduce a numerical
scheme in Section 4] To avoid the runtime-heavy Newton Algorithm and to preserve the main
features of the model, we will use a non-standard scheme, as given in [§, [15]. We will then give
some proofs to the properties of the numerical scheme. In Section [b|, we will then use our own
implementation of the numerical scheme to confirm our results from Section [3]in the numerical
experiments. Moreover, we will discuss the effect of different birth and death rates on the model.



2 Model formulation

In this section, we introduce an age-of-infection SECIR-type model that also includes births
and natural deaths. To do this, we first present the SECIR-type IDE-based model from [15]
in Section which does not yet include natural births or deaths. Then, in Section we
add the possibility of birth and death to the model given in Section As we will need a
normalized model to analyse the long-term behaviour we will then introduce a normalization of

the SECIR-type birth-and-death model in Section [2.3]

SECIR-type models are a form of compartmental models in which the entire population is par-
titioned into different compartments. The simplest compartmental model is a SIR-model, where
the population is divided into the compartments: Susceptible (5); Infected (I); and Recovered
(R). SECIR-type models are a generalization of the classic SIR-models. In our case, SECIR-type
means that we consider eight different compartments: Susceptible (S) consisting of individuals
that can potentially become infected; Exposed (E) consisting of individuals that are infected
but not yet infectious; Carrier (C') consisting of individuals that are infectious but not sympto-
matic; Infected (I) consisting of individuals that are infectious and symptomatic; Hospitalized
(H) consisting of individuals with a severe case; In Intense Care Unit (U); Dead(D) consisting
of all individuals that have died from the disease; Recovered (R), consisting of individuals that
have recovered from the disease. We consider individuals in (R) to have full immunity, since we
do not allow reinfection. Moreover, we assume that only individuals in the compartments (C')
and (I) are infectious, as we assume individuals in (H) and (U) to be isolated either at home
or in a hospital. Then, we define the set of compartments as Z = {S,E,C,I, H,U, R, D}.
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Figure 1: Structure of the SECIR-type IDE model. Schematic representation of the
compartments and the transitions between the compartments in the SECIR-type IDE model.
The states in which individuals are infectious are highlighted in red. As given in [15].
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We will formulate the model using integro-differential equations. Therefore, we call the model



SECIR-type IDE-based birth-and-death model. The general structure of a SECIR-type IDE
model is given in Figure[l] As the general structure for all models, to be introduced, is the same
and we use the same parameters, we introduce them at this point.

We describe by ¢2?(t) the number of individuals who transition from 21 € Z to 20 € Z at
time t. These transitions are only defined for consecutive compartments, as indicated by the
arrows in Figure Moreover, 0 < ¢(t) < ¢, for ¢ € (0,00), gives the average daily contacts
of an individual at time ¢, and p(t) € [0,1] gives the average transmission probability. By
¢o(T) €10,1] and &;(7) € [0, 1], we denote the mean proportion of individuals in compartments
C and I which are not isolated after time 7 in the respective compartment. For 21,20 € Z, we
denote by p3? € [0, 1] the expected proportion of people who move from 2; to 23 in the course
of their infection. The expression vZ?(7), with 772 : R — [0, 1], denotes the expected proportion
of individuals who are still in compartment z; after time 7 in this compartment and who will
move to compartment zo over the course of their infection. This proportion as used in [15] does
not take into account the possibility of natural death. For theoretical purposes, we need some
assumptions about these functions.

Assumption 2.1. For all 21,29 € Z , we assume the following

a) v3? is continuously differentiable on (0, 00),

b) vZ2(7) is monotonically decreasing with v2(1) =1 for 7 <0,
¢) 72 € L1((0,00)),

d) limy 00 v22' = 0.

A combination of these assumptions implies lim, ;. 732(7) = 0. In [15] they only have Assump-
tion a)-c), but for the long-term analysis of the model we will also need Assumption d).
Moreover, we want to emphasize that Assumption d) is not trivial, as can be seen in the
following lemma.

Lemma 2.2. There is a function ~y satisfying Assumption a)-c), but not Assumption

d).
Proof. We start by constructing the derivative of y. For every i € N, we define for = € (i,i427%)

fi(@) 20+ (2 —4) for z < i4 2-(+D
X)) == . . .
1—27 (z—i—270F)) for g > 4+ 27(FD),

A plot for f;(x) is given in Figure [2l Using this, we define for all z € R

fi(x) for x € (i,i +27%) for some i € N
fy o [ (i +270)
0 else.

Then, we define

y(t) =1 —/_ f(z) dz.
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Figure 2: The function f;(x) for i € {1,2,3,4}.

Then v € C1((0,00) is obvious, and we also have v(t) = 0 for t < 0. Moreover, we compute

00 0 4270
/_OO f(z) de = ;/Z fi(x) dx

= i 2= (D) — 1,
1=0

This immediately implies
t
lim ~(¢) = lim <1 —/ f(z) da:) = 0.

t—o0 t—o0 oo

Lastly, we show that v € L'((0, 00))

:/ S o) -3 g6 | gy

R\ i=o0 1=0
_ / S 2| g
R \i=ra+1

_ / 211 96+ | gy
R e

< / 27t dt < 400.
R

Therefore, v satisfies Assumption a)-c), but v/ = —f is not converging.
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Remark 2.3. From Assumption[2.1]it follows that there exists a cumulative distribution function
1 —~Z2(7) that describes the distribution of the stay-time. This means that vz is the survival
function of a probability distribution. Therefore, =¥’ : R — R is a probability density function
that is continuous on (0,00) and satisfies —yZ*'(7) = 0 for all T < 0. It is also obvious that

—i € L'(R).

Lastly, we introduce the natural birth rate v, and the natural death rate v;. The natural death
rate does not include those individuals who die from the considered disease. The meaning of
the parameters is summarized in Table

Parameter Description
o(t) Average daily contacts at time ¢.
p(t) Risk of transmission on contact at time ¢.
&o(T) Proportion of Carrier individuals with infection age 7

that are not isolated.

&r(m) Proportion of infected individuals with infection age 7
that are not isolated.

pz? Expected transition probability from compartment z; to zo.
22 (T) Expected proportion of individuals who are in compartment z; 7 days
after entering this compartment and who eventually move to compartment zs.
v Birth rate.
Vg Natural death rate.

Table 1: Description of the parameters used to define the model.

2.1 A SECIR-type IDE-based model

Now we want to explicitly define the compartments, the transitions and the force of infection
term, described above, in order to get a SECIR-type IDE model, similar to the model from [15].
As this model does not include any endemic dynamics, the natural birth and death rate is set
to zero, meaning v, = v4 = 0. The total population in this model is given by

Nty =Y Z(1). (2.1)

A4

Since this sum also counts the deaths, no one can drop out of the model and the total population
is constant over time. We will also see this fact later on in this section.

We define the model equations starting with the force of infection term A. The force of infec-
tion gives the rate at which susceptibles become infected. We assume that only people in the
compartments C and [ are infectious. Therefore, these are the only compartments that have an



influence on the force of infection term. After seeing the explicit definition of the compartments,
we will further comment on this. For now, we define

t
N = i g | €ett=9) (bt = )+ (1 ) a8 - 9) oo

+&r(t = 8) (uf A1 (t =) + (1= pi' ) 27 (t = ) ob(s) ds. (2.2)
The equations for the compartments write
S'(t) = =S(H)A(t)
B = [ gt 9)080) ds
O = [ (it =s)+ (1~ ) ot~ ) o5) ds,
0= [ Gl f =)+ (0 )= ) obla) ds
H(t) = /_too (nr vt =) + (1= ulp) v (t = ) of (s) ds, 23
U0 = [ (BB )+ (1 uB) bt~ ) (o) .
R = [ oB6)+of(6) +ofis) + ofis) s
D(t) = / too oD (s) ds

Remark 2.4. Given the definition of the compartments, one can see that the definition of the
force of infection is a modificated version of % Where, we weighted the function inside the
integrals of C' and I with the terms &o and &1, in order to only count of individuals that are not
isolated within the force of infection term. Moreover, we multiplied the sum by the number of
contacts ¢ times the risk of transmission p.

In general, it is not clear whether this model admits a unique solution since the integrals start at
—o0. To ensure the existence of a unique solution, we need to add initial conditions. We assume
that we know the values for the compartments in ¢t = 0, i.e., we assume S(0) = Sy, F(0) = Ej,
C(0) = Cp, I(0) = Iy, H(0) = Hy, U(0) = Uy, R(0) = Ry, D(0) = Dy. Moreover, we let Zy(t)
for Z € Z be the functions that give the number of individuals that were in compartment Z
at t = 0 and are still in compartment Z at time ¢ € [0,00). It is clear that Ry(t) = Ry and
Dy(t) = Dy are constant as no individual can exit these compartments. Then for ¢ € [0, 00), the



equations for the compartments become

oE(s) ds + Eyl(t),
(BEAEE = s)+ (1= ub) vE(E — 9))

(uf it =)+ (1= uf) vt - 5))

—

ug Gt =)+ (1= pp) vt - 9))

S
[
/Ot
J
1) = [ (hafite =)+ (1= ) e - )
[
/Ot
J

of (s) ds + Dy.

o (s) ds + Co(t),
ob(z) ds+ Io(t),
ot (s) ds+ Ho(t),
o (s) ds+ Up(2),

ol(s) + ofi(s) + ol (s) + ofi(s) ds + R,

With the following assumption, we can write down Zy(t) for Z € {E,C, I, H,U} explicitly.
Assumption 2.5. We assume that all individuals who are in an infected compartment after
time t = 0, meaning they are in {E,C,ILH, U}, entered this compartment at t = 0. In other

words, they have infection age zero.

This assumption is not made in [I5], as they take into account the whole history of the disease
and analyse the model mainly numerically. This assumptions leads to different formulas for the
compartments and the flows, therefore this model is not exactly the same model as given in [15].

We now write

Then Zy(0) = Zy. For the force of infection term we write

A(t) = Dolt) + / o

With Assumption we get for A\o(t)

Ao(t) = (1) p(t)

Eo(t) = Egv§ (),

Co(t) = Colpee(t) + (1 — pe)ré
Io(t) = To(ui' v (8) + (1 = pi 7

Ho(t) = Ho(ugrye () + (1 — php)vir(t
Uo(t) = Uo(upnE (8) + (1 — u) )i

(BE A&t —5) + (1= u&) 78t = 5)) o5 (5)

+ é’z (t—s) (uf ' (t =)+ (1= pi') 7' (t — 5)) o6 (s) ds.

Co(t)éc(t) + To(t)&1(t) '

N(t) — D(t)

10
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To fully describe the model, we need formulas for the transitions o72. To compute them, we use
the fact that the derivatives of the compartments should be determined by the in- and outflows.

Therefore, we can derive

S'(t) = —ag(t),

E'(t) = 0§ (t) — 0% (1),

C'(t) = 05(t) — ot:(t) — of(8),

I'(t) = of,(t) — o' (t) — o7 (1),

H'(t) = o' (t) — o (t) — 0 (2),

U'(t) = oy (t) — o (t) — o} (1),

R'(t) = of(t) + o' (t) + o5 (t) + o} (1),
D'(t) = o (t).

(2.8)

By computing the derivatives of the equations ({2.3)), one can derive the formulas for the trans-
itions. For the explicit computations, we refer to the computations for the birth and death

model in Section Here, we only give the transitions, that write
0§ (t) =—S'(t) = S(t) A(t),

oS(t) = - / 2§t — 5) 0B (s) ds — Er§' (1),
0

ottt == [ 2t~ ) b o 5) ds — Condort ),

o)== [ 20— 5) (1= ) o5 (5) ds — o1 — b ),
o1 (0= = [ 26— 5) il otls) s — D! a0,

o)== [ 2= 5) (1= ulf) o) ds = Dot = i 1ol )
o)== [ = o)t of s)ds — Honf ),

o) = [ o= 0) (1= ) of () ds — Hult — w0,
o)== [ 6= ) B 3 (5) ds — Vi)

o)== [ 26 =5) (1= B) ohs) — Vot — w1l s

(2.9)

Now, we stated the model with initial conditions. The goal of this was to make sure that there
exists a non-negative solution, we will further comment on this in the next section. For now
we just assume that there exists a non-negative solution to our equations and therefore assume

that all compartments and transitions are non-negative.
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Remark 2.6. We already stated in the introduction of the model that we expect the total popu-
lation to be constant over time. Together with the non-negativity of the compartments, this fact
can be directly derived from (2.8)), as this implies N'(t) = 0.

The following remark shows that the initial conditions do not have an influence on the long-term
behaviour of our model.
Remark 2.7. By Assumption |2.1], it is easy to see that,

1. for Z € {E,C,I,H,U} it holds lim;_,~ Zy(t) =0,
2. for suitable combinations Z, X € Z there holds limy_, Zo,u)g’yé’(t) =0,

2.2 A SECIR-type IDE-based birth-and-death model

We now generalize the model from the previous section to endemic scenarios by including the
possibility of natural birth and death. Therefore, from now on we assume that the natural
birth rate and the natural death rate are positive, i.e v, v4 > 0. Moreover, we assume that the
probability of surviving natural death is given by e~"!. Then for this model we define the total
population as

N(ty= Y Z(). (2.10)

ZeZ\D

We note that in Model we included the death compartment in the total population NV .
In we do not include the death compartment as this time we only want to account for
living individuals. Moreover, we will assume the same initial conditions as before to ensure
the existence of a solution. This means we assume that S(0) = Sy, F(0) = Ey, C(0) = Cy,
I1(0) = Iy, H(0) = Hy, U(0) = Uy, R(0) = Ro, D(0) = Dy. In addition, we assume that
Assumption still holds true. Moreover, let Zy(t) for Z € Z be the functions that give the
number of individuals that were in compartment Z at ¢ = 0 and are still in compartment Z at
time ¢ € [0,00). The functions Ey(t), Co(t), Io(t), Ho(t) and Uy(t) are given by

Eo(t) = e """ Egyg (1), Co(t) = e "' Coye(t),
Io(t) = e Tyr (1), Ho(t) = e " Hoypr (1), (2.11)
Uo(t) = e " Uy (1), Ro(t) = e "' Ry,
using
Yo (t) = poré () + (1= pE)VE (), vi(t) = iy (8) + (L= i )vE(L), (2.12)
vr(t) = piyi () + (1 — ui)vi (), Yo (t) = ppv () + (1= pi)vi (). ‘

Then, we have that Zy(0) = Zp = Z(0). Again, we start by introducing the force of infection
term A. In our model, only living individuals can be infectious to others, hence we need to add

12



the probability of surviving natural death. We do this by by multiplying vZ2(7) with e™"47.
Then, A(t) at time ¢ € [0, 00) is defined by

A(t) = Ao(?)

t 2.13
+ 2000 e oproog(e)e =0 + &~ sputtiob(opeut = as.

With Assumption [2.5] we get
(1) = (t) pley GO, 214

N(t)
In addition, the equations for the compartments look quite similar to those of ([2.4]). To every

equation, we add the probability of surviving by multiplying 7?(7) with e~"4". To the definition
of the susceptibles, we add the births and subtract the deaths. Therefore, we get

1t — s)e ") L(s) ds + Iy(t),

2

2

i (t — 8)e 7)Y (s) ds + Up(t),

—vg(t—s) (O'g(s) + gﬁ(s) + O'E(S) + ag(s)) ds + Ro(t),

Cb

0'5(8) ds + D().

J
J
J
mi = | (e — ) ot (s) ds + Ho(), (2.15)
J
J
J

Again, we make the assumption that all individuals who are in an infected compartment at time
t = 0 entered this compartment at ¢ = 0, that is Assumption In the further analysis of
the model, it will be useful to have the equation for S as an integral equation. Therefore, the
following lemma will be useful.

Lemma 2.8. It holds

t t
S(t) :/ N (s)e 7 t=5) (g —/ A(s)S(s)e a(t=3) ds + Spe~vat, (2.16)
0 0
Proof. Integrating the equation for S and applying the integration by parts formula yields

t t
/ S'(s)evat=5) g :/ N (s)e 4(1=5) ds
0 0

13



[S(S)e—w—ﬂoz /0 VN (5)e—vat=5) g5 _ / S(s

/s

t
_”d(t_s) ds—/ vgS(s)e —va(t=s) gs.

—Vd(t—s) ds

S(t)

e valt=s) 4 Sope vt ds.

et as— [ st

O

As in Section the change of the compartment sizes should be determined partially by
the in- and outflow, but for model they should also be determined by the births and
deaths. Therefore, the following relations between the derivatives of the compartments and the
transitions should be true

S'(t) = —c§(t) + N (t) — vaS(t),

E'(t) = 0B (t) — a§(t) — vaB(t)

C'(t) = o5 (t) — ab(t) — o(t) — vaC(1),

I'(t) = of(t) — of (t) = o7 () — val (1),
H'(t) = o' (t) — oy (t) — ofi(t) — vaH (1), (2.17)
U'(t) = ofy(t) — o3 (t) — o} (t) — valU (1),

R(1) = o8(0) + o (1) +ofi (1) + o) — vaR (1),
D'(t) = o ().

We now want to derive the formulas for the transitions 072 using (2.17). Therefore, we take

the derivative of the compartment formulas in (2.15)) .

For simplicity we only consider the

compartment C. The equations for the other compartments can be derived analogously. By
using the Leibniz rule for integrals and the assumption that v22(0) = 1, we compute for C’(t)

C'(t) = a

S

(Mc 'VC

(f

(ihrk(t = 5) + (1= ) vt — 5)) 0E(s)e =) ds) o)

) + (1= 1) vE(0)) o5 (t)e”

t
4 /0 (et — 5) + (1= ub) 18t — ) 0% (s)e a9 ds

t
- / (et —s)+ (1 — pb) vE(t —5)) o5 (s)vae 2 (1=) ds
0
— vae " Corye(t) + Coe "5 (t)
= o5 (t) — vaC(t)

t
4 /0 (et — 5) + (1= ul) 18t — ) 0% (s)e a9 ds

14



+ Coe ™ (ueAd (1) + (1 — pen &' (1)

t
= o9(t) + /O HEAH(t = 5)oSe ) ds 4 el Coplnt (1)

=—oLi(1)

t
+ / (1= pEn &' (t = s)afe™ ™) ds + e/ Co(1 = pE ) (1) —vaC (1)
0

:—O’g(t)

The equations for the transitions can then be written

Q
&
—~
~
~—
I
>
=
~
n
—~~
=

~+

q
iy

(s)e =)y G/ (t — s)ds — e " By (¢),

=Q

(s)e 1 ufnd! (t = 5) ds — e Copnd!(t),

S
QN
=
I
|
Q

=Q

(8)e ™40 (1 = by (¢ — s) ds — e e Co(1 — b8 (1),

q

~

(s)e Iy (t = 5) ds — e Toug ' (1),

Q
~
=
I
I
Q
O~

- B (2.18)
(s)e a1 — (1 — ) ds — e Io(1 — uf )y (1),

~+

q
~im

(s)e "4 pfy g (t — 5) ds — e Houviy' (1),

~+

q
~n

(s)e™ (1 = pg)yfy (t = 5) ds — e " Ho(1 — pfp )i (8),

Q
)
=
Il
|

~+

(s)ef'jd(t*s)ugfyg/(t —5)ds— ef'jdtUoug’yg'(t),

Q
=<

ol (s)e™ (1 — Gl (¢ — s) ds — e V(1 = Al (1)

S
=
o
|
‘Nﬁ‘%‘:\‘:\cﬂ’\w‘:\‘:\‘:\‘:\
Q
O~

Before proving some properties of the model, we want to introduce the concept of the mean
infectivity.
Definition 2.1. We first define

Bo(s) = te(s)e(s).
Bi(s) =¢&1(s)yi(s), and (2.19)
B(s) = /0 By(w)pdrl! (s — v) dv.
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Then let a1, as be defined as

ar(r) = e / B! (r — ) du,
0

/ (2.20)
as(1) = e_””/ 7! (r — u)B(u) du.
0
Finally, we define the mean infectivity
A(1) = (a1(1) + aa(7)). (2.21)

Remark 2.9. Then, A is non-negative as both a1 and as are non-negative. This is true, since
7S/ (t) <0 for all t.

2.2.1 Properties of the SECIR-type birth-and-death model

In this section, we will prove some helpful results about Model (2.15]), that we are going to use
in the further analysis of the model.

In the following, we will show an alternative version of the force of infection term. This version
will be useful for the further analysis of equilibria in Section
Lemma 2.10. We can write \(t) from (2.13) as

At) = No(t) + W/O A(s)S(s)A(t — s)ds + Wf(t), (2.22)
with
f(t) = EgA(t) — Coe "' B(t) (2.23)

Here, B(t) and A(t) are given by (2.19) and (2.21)).

Proof. By applying a change of variables s to ¢ — 7, we compute for the first term of A (2.13))

Be(u)Ege 748! (t — u) du

/Ot
S /0 t AMu)S (u)e et ( /0 o Bo(t)Wg'(t — 1 — u)d7‘> du
/

16



Similarly, for the second term of A (2.13)) we compute

t
/ e Vi) Bt — s)ok(s)ds
0

t S
= [ i) ([ oBue bl s - 0 dut e Colti () ds
0 0

t t—1
= / e YT Br(T) (/ Ug(u)e_”’i(t_T_“),uévg(t —T—u) du> dr
0 0
t
- [ Bitr)Coe tulenli - 1) ar
0

t t—u
= —/ 0% (u)e Vet < Br(m)utAl(t — 7 — ) dT) du
0 0
=:B(t—u)

t
~ [ BrtwCoe ot (¢~ v du.
0

We now take a closer look at the first integral above
¢
—/ oS (u)e Bt — u) du.
0

We can see that it has the same form as the first part of A (2.13) with B(t — u) instead of
Be(t — u). Therefore, applying the same computations to this as to the first part of A, yields

t
/ e V=) Bt — s)ol(s)ds
0
t t—u
_ / )\(u)S(u)e_”d(t_“)<
0 0

t
+/ B(u)Eoe S (t — u)du
0

B(T)fyg'(t -7 — u)dT> du

t
— [ BrtwCoe ot ¢~ w du.
0

Putting the formulas we computed for the first and second term of the force of infection \ (2.13))
together yields

/0 t e V=) Bo(t — 8)aG(s) + e YA ) By (t — s)oli(s)ds
- /0 AMu)S(u)evalt=w < /0 - A&t — T —u)(B(r) — Ba(7)) dT> du

t
—/ Be(u)Ege Y425 (t — u) du
0
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t
+/ B(u)Ege 5$ (t — u)du
/BI YCoe Vet ul Al (t — u) du

/ A(u At —u) du+ f(t).
What finishes the proof. O

That new version of the force of infection term A is going to be useful for later analysis. Moreover,
it allows us to comment on the existence of a solution for our model. From a biological point
of view, it only makes sense to work with non-negative solutions, as we cannot have a negative
amount of individuals in a compartment. From the equations for the compartments and
the transition (2.18]) we cannot directly show that every solution to these equations has to be
non-negative. Therefore, we want to talk briefly about the existence of solutions. First of all,
we realize that we have a Volterra integral equation for S and A . Volterra integral
equations have the following form

+ /t K(t,7)G(X (7)) dr. (2.24)
0

Then in our case we set

0 —e v
K(t,T) = ( 0 ¢>(t)P(t)A(7_) ) ) G(X(7)) = ( A(T)S(7) ) .

N(t)

Soe*”dt—i—ft VN (s)eva(t=5) ds
No(t) + 2080 £ (1) ’

There is plenty of literature about Volterra equations and the existence of solutions of such
equations, see for example [16, (17, [18]. We assume from now on that there exists a non-negative
solution to our equations, as negative solutions void of biological meaning. However, non-
negativity of solutions is a non-trivial property of a solution. Nevertheless, from now on we
assume that all the compartments and transitions are non-negative. This also implies that all
compartments are smaller than the population size N(t), by definition.

Now we want to show a bound for the force of infection term.
Lemma 2.11. For all t € (—o0,00), it holds

A(t) < ¢(t)p(2). (2.25)

Proof. We will use c(s),&1(s) < 1forallt,s € (—oo0,00) and C(t)+1(t) < N(t). Then, defining
A as in (2.6) we can compute
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Lemma 2.12. For fized t € (0,00), it holds
1. 0 < A(t) <2 forallt € ]0,00),
2. [¢7 A(T) dr < o0,
3. limy_o0 B(t) = 0 and limy_,o, A(t) = 0.

To prove this lemma, we need some properties of convolutions. First, we recall the definition of
a convolution, that is for p,q : R — R defined as

wa)(®) = [ p(t=s)a(s) ds. (2.26)

Then we have the following lemma.
Lemma 2.13. It holds for all p,q: R — R

P allz, @) < [Pl @llallz, @)

Moreover, if p € LY(R) and ¢ € L'(R) N L>=(R) it holds
T (p < 0)(t) = .

Proof. The first statement is proven in [I9] and is a special case of Young’s convolution inequality.
The second statement is an exercise of [19], therefore we will present the proof here.

We first assume that p € C2°(R), then we know that there is some R > 0 such that supp(p) C
Bpr(0). Then, for |[t| > R, we have that p(t — s)q(s) = 0 if |s| < |t| — R. This implies for [t| > R
pea)(®) = [ ot = s)a(s)ds

< (max ]p(t)]) / q(s) ds — 0 for [t| — oo.
teR R\B|¢-r(0)
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Here we used that ¢ € L'(IR). This proves the statement for all p € C2°(R). Now, we proof the
statement for all p € L'(R). We choose a sequence p, € C2°(R) that converges to p in L', this
sequence exists by density. We compute

(pn * )(8) — (0% Q) ()] = /R (o — )t — 5)q(s) ds

<|lpn = pllLr@®)llgll L@ — 0 asn — oco.

Here we used the Hoélder inequality. This shows that the convolutions p,, * ¢ converge uniformly
to p * q. This implies that (p * q)(t) — 0 as t — oo, which concludes the proof. O

Using Lemma [2.13| we are now able to prove Lemma [2.12

Proof of Lemma[2.12. In Remark we already stated that A is non-negative. For the first
statement we easily compute

aﬂ7)==6‘”“1£T6000(u57500+(1ué)vgﬁo)vg%fu)du
< /OT(—’yg’(T —u)) du

< / —§'(s) ds = 1,

—0o0

and

aafr) = [ ( [ a0 (280 + (1= ) oF ) bl =) dv> A — ) du

< ([ rtta=opao) (-1g - w) au

T—C’T—u U
s/0< 2§ (7 — w)) du < 1.

In both estimates we used that —y%/(7) is a probability density function. Then together we
have

A(7) = (a1(1) + ao(1)) < 2.

Now, we show the other statements. We start with a1, where we want to make use of Lemma/[2.13
Therefore, we define

(u) = L 60 (er6() + (1= pp) 16(w) ifu>0
T 0 itfu<0

—~Cw) ifu>0
plu) = { E
0 if u < 0.
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Then, by assumption p € L'(R) and ¢ € L!(R), and Lemma gives us that
r(r) = = [ o) (bt + (1= ) 18() 27 = w) du
oo
< [ pltr - w du
—0oQ
and therefore a; € L((0,00)). Moreover, we have that ¢ € L>(R) and, therefore, we can also

apply the second part of Lemma and get

lim a;(7) = 0.

T—00

Now, we take a look at as and start with the inner integral

B(u) = / () (A () + (1= ) AR W) o (7 — v) do.

With the same trick as above we see that B(u) € L'(0,00) and lim, ., B(u) = 0. Moreover,
we know that B(u) € L*((0,00)). Then we apply the trick from above again and get that
as € LY((0,00)) and lim, ;g az(7) = 0. A combination of both results yields the claim of the
lemma. O

The following lemma shows that we can neglect the initial conditions in the long-term analysis
of the model.
Lemma 2.14. Let Z € {E,C,I,H,U, R}, the following statements hold true.

1. limy_so0 e ¥4 Zy(t) = 0,

2. for every X € {E,C,1,H,U, R, D} such that there exists a transition from Z to X there
holds lims_, oo e_”dtZ(w%{’(t) =0,

3. limy_00 f(t) = 0 and if we furthermore assume that limy_,oc N(t) > 0 we also have
liminf; o Ao(t) = 0.
Proof. We show each claim separately.

1. For Z € {E,C,1,H,U,} we already saw in Remark that Zy(t) — 0 as t — oo. Then
we obviously have e "' Zy(t) — 0 as t — oo. Since Dg(t) = Dy is constant, we also have
e vt Dy(t) — 0 as t — oo.

2. By Assumption we know that lim; 7%{’(15) = 0, and we have lim;_,o, e 774" = 0. This
shows the claim.

3. For \o(t), we again use that Co(t), Io(t) — 0 as t — oco. For f(t), we directly see that the
first term EyA(t) converges to zero by Lemma

O]
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2.3 A normalized SECIR-type birth-and-death model

The goal of this thesis is to study the long-term behaviour of the SECIR-type birth-and-death
model, an important part of this is the stability analysis of equilibria. In most cases, we do not
have a constant population size for the SECIR-type birth-and-death model given in Section
This makes the long-term analysis very complicated, and it is not clear how an equilibrium in
this case is defined. In this Section, we will therefore introduce a normalized model, in order
to study the dynamics of the disease independently of the change in the population size. When
normalizing a model, we divide every compartment by the population size N. In [11] and [12],
the authors study a model based on ordinary differential equations with a non-constant popu-
lation size. The ordinary differential equations allow for a direct derivation of the normalized
model. However, when using IDE-based formulations as introduced before, the procedure is
more complicated. In our case the integro-differential equations make this more complicated,
since the factor ﬁ cannot be taken into the integrand. We therefore suggest the following
model for which we we are not able to show that it is the correct normalized formulation of
model . Later on in Section [5, we will demonstrate numerically that the corresponding
discretized model provides qualitatively and quantitatively similar outcomes.

To initialize our normalized model we use zy = ff—g, with Zj as in the SECIR-type birth-and-
death model in Section Moreover, we define

eo(t) = e “egyg (1), co(t) = e "egye(t),
io(t) = e " igr(t), ho(t) = e~ hoyp (1), (2.27)
up(t) = e " ugyy (t), ro(t) = e ity

As already mentioned, in models based on ordinary differential equations, it is easy to derive
the normalized version of the model. Therefore, we will start by recalling that the derivatives

of (2.15)) are given by (2.17)), that is
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To compute the derivatives of the normalized compartments, we make use of the quotient rule

<Z(t) > Z'(#)N(t) — Z(t)N'(t)
N2(t)

This yields

(8) = =M(B)s(t) + (1 = s(t)ws + 5(0) ié)((f)),

0 =200~ Gt~ elt) + ) T,

) = Uzv%(tt)) - Ué(ty(t()fg(t) — we(t) + c(t) ?vlj)((t?,

i) = UJ\é((f)) "?“ﬁﬁti’ﬁ“) — wi(t) + it ﬁ(f)), (2.28)
W(t) = U]\I}; (<tt)) B aH(tgvj(Lt;E( ) h(t) + h) Ujé)((tt))’

") = s Uﬁ(t?\fz{jﬁ(w +odlt) _ vpr(t) +r(t) ‘;éf)(%)

We directly see that in the normalized version of the derivatives , the force of infection
term A from Model still appears in the same form. There is no obvious way to get rid of
the term ﬁ in the definition of the force of infection term of the SECIR-type birth-and-death
model in . But, as we cannot predict the population size without knowing the behaviour
of the compartments which again depends on the force of infection term, the long-term analysis
of the model would be very complicated. Therefore, we slightly change the definition of the force
of infection term and call it [. As its definition depends on the definitions of ¢ and ¢ we will
give it after defining the compartments. Then, in order to define the compartments we guess an
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integral formulation that suits the derivatives for the compartments given in (2.28]). This yields
s'(t) = —1(t)s(t) + (1 — s(t))vp + s(t)ol(t),
t
o(t) = / 2§t — 7)e DY) s(r) dr + eolt)
0

+ /0 G = et (va+oi(r) = ) e(r) dr.
(t) = /0 Dot = P)e T g8 (1) dr o)
+ /0 ot — vt (va+oi(r) = w) e(r) dr,
i(t) = /0 C1(t = P)e g () dr + it
+ /0 r(t = P)eratt=") (va+oi(r) = w) () dr, (2.29)
h(t) = /OtfyH(t—T)e 46=D)gh (1) dr + ho(t)
+ /0 Lt — et (va+ o) = ) () dr,
ult) = /0 "t — 7)e g dr + o)
+ /0 ot — 7)) (va+ot(r) = ) u(r) dr,
r(t) = /Ote vat=) (o7 (r) + o7 (1) + o} (1) + oh(1)) dr + 1o (2)

¢
+ / e~valt=T) (Vd +od(r) - l/b) r(T) dr.
0

Before, the force of infection term was given by some modified o« A),J(rg( ) as C and I are the only

infectious compartments. The idea now is to modify (]\),J(rtg = ¢(t) + i(t), the same way as

described for A in Remark This yields
t
1) = oft) + 9(2)p(t) [ Belt -~ r)e o (r)
0

+Bc(t o T)e—l/d(t—’f') (Vd + 0’5(7’) — l/b) C(T) (230)
+By(t — T)eil/d(tiT)O'i(T)
+By(t — T)e_”d(t_T) (I/d + 05(7) — y;,) i(T) dr,

with

lo(t) = ¢(t)p(t) (co(t)éc(t) +io(t)Er(t)) s (2.31)
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and B¢, By given in ([2.19)). At last, we define the transitions by

"t — T)e_yd(t_T)l(T)S(T) dr — e_l’dteovg’(t)

q
o0
=

I
\

c\&
)
=Q

VB (= T)e ™) (vy + 0l(r) — ) e(7) dr,

\
S~

AT g (7) dr — el optnd (1)

S
S
=

I
|

o\&
=
Q~
)
Qz
-

I
2
g

(t — T)e_”d(t_T) (Vd + (1) — Vb> e(r) dr,

|
or\?F
=
Q~
)
Qz

Vil Dog(r) dr — e Viteo(1— uE (1)

S
o
=

Il
|
c:r\H~
—
|
=
Qo
)
Qm
-
|
2
M)

(1- ué)’yg/(t — T)efl'd(t*T) (I/d + 03(7’) — I/b> e(r) dr,

|
S~

~+

- T)ef"d(th)az(T) dr —e” zo,uH'yH/(t)

Q
S
=

Il
|

o\
=
~T
)
s
=

Al (¢ = )e ) (vg 4 0l(r) = 1) i) dr,

|
S~

(1= pf ) (¢ = 7)e ™ Day(r) dr — e ig(1 = pf )i ()

Q
—
~
S~—
||
o\
2

(2.32)
(1= uf (¢ = )e ) (v + 0l(r) = ) i) dr,

ﬁ

B (¢ = m)e Tk () dr — e~ athopfily (1)

Q
>
—
~
~—
I
|
O\“

,u%’yg’(t — T)e*”d(t”) <Vd + O'Z(T) — I/b> h(r) dr,

|
S~

(1 — )y (¢ = m)e Do (r) dr — e "4 ho(1 = pfp)viy' (1)

Q
>3
—~

o~
~—

O\@L

(1- /LH)’yﬁI’(t — T)e*”d(t*T) (I/d + 03(7') — Vb) h(r) dr,

o\ﬁ

~+

od(t) = - / pPAR! (t — 1) =gt (7) dr — e~VatuguBAR (1)
t
= [ Bt = e (et o) ) ()
0
t
oT(t) = - / (1 — s B (¢ — 7)e 1) gt (r) dr — e¥atug(1 — D)y B/ (1)
0

t
= [ B = e (gt o) - ) u(r)
0
If we compute the derivatives of the compartments (2.29)) using the definition of the trans-
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itions (2.32) we get the derivatives from ([2.28) with use [ instead of \. We show this exemplary
for the compartment c¢. Using the Leibniz rule for integrals gives us

¢ (1) = 10(0)e” (020t + (va+ot(t) = 1) e(t))

— vy /Ot ot — 7)evalt=T) (ag(T) + (Vd +od(r) - Vb) C(T)) dr

+ /Ot Yo (t — 7)evat=T) (02(7) + (I/d +od(r) - Vb) c(T)) dr
+ cp(t)
= o2(t) + (va+ ol(t) — ) e(t)

— 1y /Ot vo(t — T)e*”d(t”) <a§(7’) + (I/d + od(r) — l/b> c(r)) dr
b [ (bl ¢ =)+ (1= (e ) e

. (05(7') + (I/d + aff(T) — yb) c(r)) dr
— vaco(t) + e ey (ueE (8) + (1 — pE)vE (8)
= o%(t) + (ud +od(t) - u,,) e(t) — vge(t)

+ /Ot ptAl (t - T)G_Vd(t_T) <Jg(7’) + <Vd +ol(r) — Vb> c(T)> dr
+ e eouint! (t)
+ /0 (1= wl (¢ = 7)e™ ) (oe(r) (va+ 0l(r) = ) e()) dr

+eVeo(1— po)rE (1)
= o%(t) + ol (t)e(t) — vpe(t) — ol (t) — o(t).

As before, we would like to get a Volterra type equation. Therefore, by integrating the formula
for s, as we did for Lemma [2.8] we get

t t
s(t) = —/ S(T)Z(T)e_yd(t_T) d7‘+/ Ug(T)s(T)e_Vd(t_T) dr
0 . 0 . (2.33)
+ (va — vp) / s(r)e v dr 4 I/b/ e valt=T) dr 4 sge Vit
0 0
2.3.1 Properties of the normalized SECIR-type model

Now we want to show that the normalized model fulfils the same properties as the SECIR-type

model (2.15]), that we showed in Section [2.2.1]
Remark 2.15. We see that if we replace X by l in (2.28), the mass n(t) = s(t) + e(t) + c(t) +

i(t) + h(t) + u(t) + r(t) has derivative zero. This means that the mass of the normalized model
s preserved. Then, if we start with mass 1, we will always have mass 1.
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Assumption 2.16. As before, we assume that the compartments, transitions and the force of
infection term are non-negative. Together with Remark this means that every compartment
z €{s,e,c,i,h,u,r,d} fulfils 0 < 2(t) <1 for allt € [0,00). Moreover, we assume that the flows
are bounded from above by some finite constant.

We now make sure that the conditions for for the force of infection term A from Sectionm
also hold for the force of infection term [ . First we see that we can derive a similar form
for [ as for A as in Lemma 2,10

Lemma 2.17. We can write

[(t) = lo(t) + o(t) p(t)g(t)

t

(l (l/d + od(7) — ub) 6(7’)) At — s)dr
Ot (2.34)
/ (Vd +ol(r) — Vb) e valt=7)
0
(c(r)Be(t — 1) +i(r)Bi(t —7) —e(T)B(t — 7)) dr
with A(t) given by (2.21] - and
g(t) = egA(t) — coe "' B(t). (2.35)

Proof. If we do the same steps as in the proof of Lemma [2.10, we get
t
/ Be(t — T)e_”d(t_T)ag(T) dr
0
t T
= —/ Be(t — 7')/ A& (7 — u)ereTmw) (l(u)s(u) + (Vd + od(u) — l/b) e(u)) du dr
0 0
t
—/ Be(r)e YitegyS/ (t — 1) dr
0
t
= / (l(u)s(u) + (Vd +od(r) - I/b) 6(7')) e T (b — 1) dr
0
t
- [ Beme et - ) dn.
0
and
t .
/ Bi(t — 1)e 7 gi (1) dr
0
t T
= —/ By(t — 7')/ pEAE (1 — w)emralTw (ag(u) + (l/d + od(u) — I/b> c(u)) du dr
0 0
t
= [ Bitwesteontad ¢ - w
0
t
= —/ oc(1) + (l/d +od(r) - I/b) c(7)> e_”d(t_T)B(t —7)dr
0
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t
By (u)e ™ el (t — u) du

S—

- /Ot ()\(7)3(7) - (ud +od(r) - z/b) e(7)> evat=T)go(t — 1) dr

t
va+od(r) - Vb) o(r)e VBt — 1) dr

t
B(u)ege Y4y S (t — u)du

t
Br(u)e ™ coptnd! (t —u) du.

_|_
S— — S—

O
The following version of Lemma still holds true.
Lemma 2.18. For allt € (—o0,00), it holds
(1) < o(t)p(1). (2.36)
Proof. The proof works analogously to the proof of Lemma [2.11 O

Moreover, we have following version of Lemma concerning the influence of the initial con-
ditions for the normalized model.
Lemma 2.19. Let z € {e,c,i, h,u,r}, then the following hold

_Z. llmt_>oo Zo(t) — 0,

2. for all x € {e,c,i,h,u,r,d} such that the transition z to x exists

limy—y o0 e ¥t 2075 ' (t) = 0,

3. limy—y00 lp(t) = 0 and limy_,~ g(t) = 0.

Proof. The proof works analogously to the proof of Lemma O

2.4 A normalized SIRD-model

For simplicity, we now reduce the model to a SIRD-model, in order to use it for the long-term
analysis in Section [3] A SIRD-model has the same structure as a SECIR-type model, but only
has one infected compartment. We will use this model in the mathematical analysis, as it is
much simpler, but the main mathematical structure is the same. To simplify the notation, we
set

Y1(t) = pP7 () + (1= ) (), (2.37)
’yIZ(t) = ,uf’yIZ’(t)e*”dt, for z € {r,d}. (2.38)
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For the initial values, we use s(0) = s¢,4(0) = ig and r(0) = ro and define
io(t) = e Ytigy(t), ro(t) = e Vilrg. (2.39)

As always, we start with the definition of the force of infection term

16) = 10(8) + 6(0(®) | ()s(r) + (va+ r) = ) im)Er = Ple = )0 ar.

(2.40)
Here Iy(t) is given by
lo(t) = o(t)p(t)io(t)€r(t)- (2.41)
Then with
A(t) = &)y (t)e e, (2.42)
we write
(1) = lo(t) + $(t)p(t) /0 t (Ur)s(r) + (va+ oir) = ) i(r)) At = )ar. (2.43)

Then, we directly see that we have the same mathematical structure for the force of infection as
given in Lemma for the normalized SECIR-type model. The compartments are written as

s () = =1(t)s(t) + (1 = s(t))w + s(t)of (1)
i(r) = /O vi(t — T)e e D1(r)s(r) dr

+ /0 it — 7ol (va+ o) = ) i(r) dr +io (1), (2.44)
r(t) = /O et oT (1) dr

+ /Ot e valt=7) (Vd + O'Zd(T) - Vb> r(7) dr + ro(t),

and flows are given by

t
ot(t) = = [ upap(e = meTir)s(r) dr
0

= [ uPap e = et (ot o) w) i) dr + 5P )
0 (2.45)
oT(t) = - /0 (1= uP P/t - 1)e aCDi(r)s(r) dr

= [ =P =) ) (vt o) = ) i) dr 3
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Integrating the equation for s yields

t t
s(t) = — / s(T)l(r)e =) dr 4 / od(r)s(r)e =" dr
0 0

t

¢
+ (vg — vp) / s(r)e ) dr 4 Vb/ e V=) dr 4 spevat
0 0

t t
- _/ s(r)l(r)e ") dr + / od(7)s(r)e "4t gr
0 0

¢
vV

+ (vg — wp) / s(r)evalt=T) gr 4 22— Dovat o gemvat,
0 Va  Vd

As before, we will make the following assumption.

Assumption 2.20. As before, we assume that the compartments, transitions and the force of
infection term are non-negative. Together with Remark[2.15 this means that every compartment
z €{s,e,c,i,hyu,r,d} fulfils 0 < z(t) <1 for allt € [0,00). Moreover, we assume that the flows
are bounded from above by some finite constant.

We can again show a bound for the force of infection term I.
Lemma 2.21. For allt € (—o0,00), it holds

I(t) < 6()p(2). (2.46)
Proof. The proof works analogously to the proof of Lemma [2.11 O

The following Lemma shows the influence of the initial values on the long-term behaviour of the
model.
Lemma 2.22. The following statements hold true.

1. limy_s00 i9(t) = 0 and limy_,o 7o(t) = 0,
2. lim 7P (t) = 0 and lim;_,o0 7P (t) = 0,
3. limy_00 lp(t) = 0,

4. limy_yo0 s9e 74t — Z—Ze‘”‘it = 0.

Proof. The first three statements can be shown analogously to the proof of Lemma [2.14] and
the last statement follows from lim;_,o, e %4t = 0. O

As for the other models, we have seen that the initial values have no influence on the long-term

behaviour of the model. We introduced the normalized SIRD-model mainly for the long-term
analysis. Therefore, we will now state a normalized SIRD-model without initial values that we
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will use for the long-term analysis in Section
10 = 0000 [ (10t) + (v o) = ) i) At 7
o) = [ (179601 + (v + o) ) o)) 507
it) = /0 t (Ur)s(r) + (va+ o(r) = ) i(r)) 7t = )™ ar,
r(t) = /0 t (ol-“ (r) + (Vd +of(r) - ub) r(T)) e at=T) gr, 240
o) = -

(Ur)s(r) + (va+ o) = ) i(r)) uP AP (¢ = 7)== ar,

oi(t) == [ (Un)s() + (va+oilr) = 1) i(r)) (1 = P I f! (¢ = 7)e ™07 ar.

/Ot
i
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3 Analysis of the model’s long-term behaviour

In this section we want to analyse the long-term behaviour of our models. We have seen in
Section [2.4] that the basic mathematical structures of the normalized SIRD-model and the nor-
malized SECIR-model are very similar, as the integrals of the compartments and the transitions
have the same structure. Moreover, the force of infection term can be written in a similar struc-
ture by defining the appropriate term A. The interesting features of our model, such as the
disease death and the birth and natural death rate, are included in both models. The analysis
of the SECIR-model would be very complex, already the computation of the equilibrium for
the SECIR-model would be very involved, as one would have to solve a non-linear system of 12
equations. Thus,we decide to restrict the analysis of the equilibria to the SIRD-model. At the
end of the section we will then shortly look at the expected behaviour of the population size in
the SECIR-type birth-and-death model.

3.1 Introduction of some model parameters

In this section, we introduce some important parameters of the SECIR-type and the SIRD-type
model that we will need for the model analysis. Note that the following parameters are the same
for the standard and the normalized model. In the definition of the parameters that depend on
one or more compartment, we will use small letters for the indices.

First, we introduce the concept of a reproduction number. The basic reproduction number
describes the expected number of new infections caused by one infectious individual in a pop-
ulation where everyone is susceptible. The reproduction number is a useful expression for the
controllability of a disease. In the literature the reproduction number is found to be a threshold
condition for the stability of equilibria; see [13],[I1]. In our case we will see that the reproduction
number is a threshold condition for the stability of the disease-free equilibrium, Theorem [3.3
and Some theory about the computation of reproduction numbers can be found in [20].
There are several types of reproduction numbers. Here we introduce the control reproduction
number R., where ¢ stands for control, which means that we allow isolation. The reproduction
number R, is also used in [13]. In contrarison The basic reproduction number Ry, is computed
when no control measures exist, i.e in our case this means &,(t) = 1 for Z € {¢,i}. To facilitate
the further analysis of our model, we make the following assumption.

Assumption 3.1. We assume that the transmission rate p and the contact rate ¢ are constant
with respect to time, i.e we have ¢(t) = ¢(to) = ¢ and p(t) = p(to) = p for all t € (—o0, 00).

Then we can define
oo
Re = qﬁp/ A(s) ds, (3.1)
0
where one can plug in different choices for A. We use A given by for the SECIR-type
model and A given by for the SIRD-model. One would derive the basic reproduction
number by setting £c,&;r = 1 in the definition of A , , as this means no control

measures are implemented.
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Next, we define for suitable 21, 29 € {s,e,¢,i, h,u,r,d}

T =- /0 e T2z (1) dr. (3.2)

Then 772 gives the probability that an individual transitions at some point from compartment
21 into compartment zp . Since —Z2' is a probability density function, we can compute

00 o0
T2 = _/0 e*I/dTluszyjf/(T) dr < /0 (—7512/(7')) dr

— [z ar =1

—0o0
In particular for ,u}) < 1 we even have ’Ed < 1.

In the SECIR-type model, we also define

Ve = 7;(:7
V= VT,
Vh _ 122'777,7
iyl (3.3)
Vd — Vund7

V= VTl + VT + VT + VT

Here V* gives the probability that an individual that was in compartment e at some point will
at some point arrive in compartment z € {c, i, h,u,r,d} . Moreover, we define

W, = / o (F)e T dr. (3.4)
0

Then W, is the mean stay-time in compartment z. We have the following bound

o [e.@] 1
W, = / Yo(T)e VT dr < / e ViTdr = —. (3.5)
0 0 Vq

We realize that for the SIRD-model, we have the following relation between R, and W;
Re = ¢ / &t dt < gp / Yi(E)e " dt = GpWi. (3.6)
0 0

3.2 Analysis of the normalized SIRD-model

We now analyse the long-term behaviour of the normalized SIRD-model introduced in Sec-

tion 241
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3.2.1 Assumption on the birth and death rates

In the normalized model the factor vy + azd(r) — 1, appears several times. Later on, in
the analysis of the model it will be important to control this factor. We note that this factor
is just the term w Therefore, it would be alogical assumption that vy + o¢(7) < v in order
to make sure that the population does not die out. The assumption that the population size
is increasing is also made in [I1]. In the case of [I1] this assumption is straightforward as they
have a constant rate for the disease death. However, in our case we do not have some given rate
for the disease death, instead we compute the number of disease deaths as a transition for every
time. Moreover, the assumption v4 + 0%(7) — 13, < 0 does not necessarily need to be true for
every time 7 to guarantee that the population does not die out. For example he term af could
also be oscillating. Moreover, in our proofs later we need that vy + O‘ld(T) — 1, < 0 for 7 large
enough. We now show that it is possible to ensure this by deriving an assumption that implies

that vg + od(1) — v, < 0 for all 7.

As af (t) is bounded from below by 0 and above by some constant m by Assumption we
know that the supremum exists. Therefore, we define

Osup = sup o (t).
t>T
d

%

o)== [ WPt =)0 (1)s() + (va+ o) — ) i) e

Using this we get the following estimate for o

t
<- /O UPAP!(t = 7)e ) (6 + (g +m)) dr

= (¢p+ (va+m)) T

Then, as the right-hand side is independent of ¢, this inequality also holds if we take the su-
premum on the left-hand side. This yields

Osup < ((Z)p + (Vd + m)) ,Ed'

Using this, we know that
va+ (¢p+ (wa+m)) T — v, <0

implies vg+0d(7)—v, < 0 for t > T. From this we now derive a condition for the birth-and-death
rate.

vi+ (pp +va+m) T <,
& v+ TN+ Tlop + Tim < .

We used really rough estimates in order to get to this point. This assumption is probably very
unrealistic and might not be possible to achieve. But, we wanted to show that it is possible to
derive an assumption that ensures vy + af(T) — v, < 0 for large 7. Our numerical experiments
in Section [5| justify to make this as an assumption.

Assumption 3.2. We assume that vg + (1) — v, < 0 for all T large enough.
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3.2.2 Computation of the equilibria
Now we compute the possible equilibria points of model ([2.47). Let (I*, s*,i*,7*, 0¢*, o7 *) denote

i 05
an equilibrium for model (2.47)). In particular, an equilibrium is always defined for all t € R and
does not have initial values. By definition an equilibrium is a constant solution to the following
system of equations

I(t) = ¢p /0 (l(t)s(t) + (g +od(t) - l/b)i(T)> A(t — 7)dr,
s(t) = — / t (l(t)s(t) — (vg+ol(t) — Vb)s(t)) evalt=") gr 4 Vb

oo v

it) = /_ ; (l(t)s(t) + (v + o) — ub)i(t)) yi(t — 7)evat=") gr,
r(t) = / ; (070 + (va + o(t) = w)r(1)) e ar,

1= / (10)s(t) + (va + 2(8) = )i0) ) PP (¢ = )™= ar,

i) = [ (10)50) + (a+ oo = i) (1= Py e - e

Then, as for an equilibrium z(t) = z(0) = z*, we get the following system of equations

0
I* = (s*l* + (Vg + od* — Vb)’i*) ¢P/ A(—7) dr,
—0oQ
d ’ Yo
Sﬂ< = — (S*l* — <Vd + g; - Vb) S*) / eydT dr + >
o V4
0
= (0 Gt ol = w)it) [ (e ar,
- (3.7)
r* = <af*—|— (V(H-Ufl* —Vb)>7“*/ e’ dr,
—0o0
0
of* = — (s*l* + (va+of* — Vb)i*) / ppp! (=r)e dr,
—00
0
ot == (s ol —w)ir) [ (=P enen
—00

Then after a change of variables from —7 to 7, and plugging in the definitions given in Section (3.1
we derive

1
(1) 8*:_(S*l*_(Vd+0'zd*_yb)3*+1/b>7 = s*:+7
Vd F—ol* —u
dx -
(II) I* = (S*l* + (Vd—f—O';i* o Vb) Z*) Rc = * = (Vd +10-1 *Vb)Z 7
Re S
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[*s*

(IT1) = (s 4 (vat ol =) i)W, > it= —
W, — Vd — 0; +
I*g* _ <%
(IV) ol = (s*l* + (ud + o — Vb) z*) - = ol = i +1(Vd : w)i ,
72—V
(V) o "= (S*l* + (Vd +of* - Vb) Z*> T,
1 or*
VI r*:(r*—l—(y—i— d*—y)ﬁ)— = ="t
( ) ag; d g; b vy —O"Ld* —|—]jb

We see that s*,[*,7* and afl* define a system that is independent of o] * and r*. Therefore, we
start by computing the equilibria for these four variables. Once we have done this, we can derive

o!" and r*. If we solve equations (I) — (IV) for s*I*, we get
(I) s** = od*s* — s + 1,
(IT) S = —pgit — o 4 it + —,
Re
* 7k -k d * % ok Z*
(II1) ST = —vygtt — o T 4 vt +Wi’
d*
(IV) s = —pgit — Ufl*i* + vpi* + %d .
(2
If we compute (II) — (II1) and (III) — (IV) we get the following two equations
+ Re
11y —(II]): I =i —,
(rn) (11 -
(ITI) — (IV) : od* =i W
Plugging them into equation (I) yields for s* # 0
* *RC * e id *
St =81 -~ — 1S +1

Sl Re 72 tup ) =
Wi W; b g

For s* = 0, we also get [* = 0 ¢* = 0 and ald*, which means that the population has died
out. This case is not interesting for us; therefore, we will not discuss it further. Now we have
expressions for s*,[* and oZd* only depending on ¢*. Therefore, we plug these expressions into
the equation for i* to get an equation only depending on ¢*, that is

x Re

d
R Rc—ﬁ B ? Wiyb
1 (3 T +Vb = Td .
¢ ! — Vg — Uy +

W;

We directly see that ¢* = 0 is one solution. This yields the disease-free equilibrium

(Siv T?ﬁvazdl*) = (1,0,0,0).
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For i* # 0 we get the following equation

(i*)? <(Rc —W?d)ﬁd>

1 v T4 1
-k _ Ad - _ b /g . e o
+1 ((Rc T.%) (ud Wi yb> Wi >+Wlub <WZ Vg + vy RC>
p— 07

which is equivalent to

" ey 1 2 vp(Wi)? 1
@) i (7? (”d‘m‘”b> ) &—7?) -7\, TR =0

=p =q

Then the solutions of this quadratic equation are of the form

v D @y
=—244/(%) —¢
11,2 D) B q

Depending on the parameters, it might be the case that this equation has no real solution. In
fact, we have two real solutions if (%)2 — ¢ > 0, one real solution if (g)2 —¢q = 0 and two

complex solutions if (§)2 — q < 0. For the further analysis we are only interested in the first
two cases. Moreover, we only want to account for equilibria that are non-negative and smaller
than one. First of all, we see that under the assumption that R, > 7;d > 0 we know that

(Wil o Z e RC) < 0 directly implies that (%)2 — ¢ > 0 which means we have two real

solutions. Under the same assumption and with (3.5)) we also get that

This directly implies that

it > 0 whenever R. > T4 > 0 and it is real.

The parameters are not independent of each other, as R, ’ﬁd and W, were all defined using the
transition distributions v;? and the death rate v;,. For now, we will ignore this fact and handle
them independently as we want to see for what parameter combinations we have a solution for
the equation for ¢*. We will come back to this point the Section We will further analyse
this problem using MATLAB to generate a grid. As a five dimensional grid is hard to study we
fix the parameters vy, ¥4 and 7;d and analyse the plot for varying R. and W;, as we will see a
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correlation between these two parameters. We will do the plots for 7;‘1 € {0.11,0.51,0.99}, as
7. € [0,1]. In the MATLAB code we chose the step size such that we will never hit the case
Re = ’7;‘1, where division by zero would occur. In the implementation later on we will mostly
use v = 4-1073 and vy = 3- 1073 for the birth and the death rate. Therefore, we will fix them
for now. Then for 7;% = 0.11 the evaluation of i* can be found in Figure [3| It is clear to see
that for R. € [0,5] and W; € [0, 5], there always exist two real solutions for i*, clearly except
for R, = 7,2 = 0.11. Moreover, one can see that i} is always larger than one in this case. For i}
one sees that in most cases i5 < 0. However, there are some parameter combinations that lead
to 0 <15 < 1. For R, < ’Ed we have a suitable solution i3, for large W;, when R. gets small.
For R, > 7;‘1, there is a suitable solution %3, for larger R., when W; gets small. The second
case is rather unrealistic, as we have and we would need ¢p to be very large to ensure that
Re < ¢pW;. In Figure 4| we see the evaluation of ¢* for ’Tid = 0,51. One sees that there is a

Classification of Values for i} Classification of Values for 73

Figure 3: For 7;d =0.11, v = 4-1073 and vg = 3-1073. Where the colours mean the following,
red: only complex solutions exist, yellow: ¢* < 0, green: 0 < ¢* < 1 and blue: ¢* > 1.

small area where there is no real solution for *. The area where no solution exists is where W,
is large and R. is close to 7;d. For the other parameter combinations, we have two real solutions
for ¢*, but there we always have i] > 1. One can also observe that for large VV; and small R, we
also get 0 <45 <1 for R, < 7;d. But again, for large values of R., we need small values of W;
to have a suitable solution, which is not that realistic. In Figure [5| one can find the evaluation
of ¢* for ’Ed = 0,99. This time, the area where we have no real solution is a little larger, but
still, in this area we find that R. is close to 7;d. Moreover, in this case we have an area where
a feasible solution for ¢} exists, which means 0 < ¢7 < 1. We now want to briefly have a look
at a case with a larger choice for the birth and the death rate, to see if this has an influence.
We set 7;d = 0,51, v, = 4-1072 and vy = 3 - 1072, the evaluation of i* for this case can be
found in Figure [} One sees that the result is quite similar to Figure [} but the area where no
real solution exists has increased. At this point, one would need to test if the solutions for the
other compartments are in the right interval, to know if an equilibrium for the model is feasible.
However, we have seen that the existence of an equilibrium for ¢ , that is in the right interval, is
quite rare. Therefore, we will omit this point here. All in all the question about the existence
of endemic equilibria to the normalized SIRD-model needs further work. In Section
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Classification of Values for i} Classification of Values for i3
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Figure 4: For ’7;d =0.51, 1 =4-1073 and vy = 3-1073. Where the colours mean the following,
red: only complex solutions exist, yellow: ¢* < 0, green: 0 < ¢* < 1 and blue : * > 1.

Classification of Values for i} Classification of Values for 73

Figure 5: For 7;‘1 =0.99, 1, =4-1072 and vy = 3-1073. Where the colours mean the following,
red: only complex solutions exist, yellow: i* < 0, green: 0 < ¢* < 1 and blue: ¢* > 1.

we will come back to this point.

3.2.3 Stability of the equilibria

We have seen that the disease-free equilibrium exists everywhere, independently of the parameter
choice. As seen above, an equilibrium corresponding to an endemic state exists only in some area
of the parameter space and even if an equilibrium exists often this equilibrium is not feasible for
the normalized model, as the values for the compartments and flows might not be between zero
and one. Therefore, we will focus on the stability of the disease-free equilibrium. Later on we
will make some comments about the stability of endemic equilibria. We start by showing that
the disease-free equilibrium is stable if the reproduction number is smaller than one.
Theorem 3.3. Under the Assumptions and [3.9 we have that R, < 1 implies that

¢1=(1,0,0) (3.8)
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Classification of Values for i} Classification of Values for i3

Figure 6: For ’7;d =0.51, 1, =4-10"2 and vg = 3-10~2. Where the colours mean the following,
red: only complex solutions exist, yellow: ¢* < 0, green: 0 < ¢* < 1 and blue: ¢* > 1.

is a global attractor for model (2.44]).

Proof. For the proof we use a similar approach as from [I3, Theorem 1]. We start by showing
that [(t) — 0 as t — oo. As s(7) <1 for all 7 we have

1(t) = ¢p /Ot (Z(T)S(T) + (ud +od(r) - yb) i(T)) A(t —7) dr
< ép /Ot (Z(T) n (W +od(r) — Vb) i(T)) A(t — 1) dr.

As by Lemma [ is bounded we know that the lim sup of I exists. Thus, we let
[°° =limsupl(t), i.e
t—o00

[ = tlim A(t), with A(t) =supl(s).
—00

s>t

By the definition of the lim sup there exists a sequence t,, — oo with [(t,) — [*° for n — co. By
choosing a subsequence if necessary, we can assume that t,41 — t, — 00 as n — co.
Then we can compute

tnsr) < 6p /0 " (167) + (v + o) = 1) i) Altas —7) dr

+ép /t " (167) + (v + 07) = ) (7)) Altasa —7) dr

We first take a closer look at the first part of the right hand side. Then by using Lemma [2.21
and the fact that [;° A(s) ds < oo we compute

/Otn Ur) + (I/d +of(r) - ub) i(r) | Altpsq — 1) dr

<C<oo
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tn
gww+cyé Albnsr —7) dr

§(¢p—|—0)/ A(s) ds — 0 as n — oo,
———r

<o tn+1 _tn

where me may bound (v + o(7) — 13) i(7) by some C, as vq, o and i are bounded from above
and v is bounded from below by zero. Moreover, we chose the subsequence such that the lower
bound of the integral converges to co. Now we consider the second part of the right-hand side.
Again, we make use of Assumption and we just choose t,, large enough that Assumption [3.2
holds true. This yields

tn+1
ép / () + (va+ o) = ) i(7)) Altns1 = 7) dr
tTL
tn+1
<op [ At Altass 1) dr
tn
tn-&-lftn
= ¢pA(tn)/ A(s) ds
0
< A(tn)Re
Putting everything together, and letting n — oo we get the following result
[ <I°R..

The assumption that R. < 1 implies that {*° = 0, and since [(¢) > 0 for all ¢ we know that

Now we show that afl, o; and 7 also converge to zero. As the computations for both can be done

in an analogous manner we will only do the proof for ozd. The idea is to just do the same steps
as above. First by the fact that s(7) < 1 we have

t
af(t) < / (z(f) + (Vg + od(r) — ub)i(ﬂ) uPAP(t — 7y vat=T) gr.
0
We then take the subsequence t¢,, from above. We have
tn
of (tns1) = /0 (1) + (va+ 0 (7) = w)i(r) ) 1P (tgr = T)e et =)
tnt1 d ' b D (t )
- / (Z(T) + (va +0i(7) - Vbﬁ(ﬂ) prr gy — )" AT dr
tn

By the same computations as above and the fact that fooo /AID'yID'(s)e*”dsds < oo we have that
the first term of the right-hand side converges to zero.
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For the second part we compute by using Assumption
tn+1
= [ (1) + G 0tr) = i) PP s = e
t

tn+1
= _A(tn)/ PP AP (tngs — 7)e4n1=7) dr
tn
< A(tn)T!

where we used that the integral is positive, as —71D "> 0. This then implies ag(t) —0ast — oc.
Again, with the similar computations we can show that r(t) — 0 as ¢ — oo using that o] goes
to zero.

Lastly, we use the fact that s(t) =1 —i(t) — r(¢t) and see

O]

In order to study the stability of equilibria for the case R, > 1, we use the approach from [13],[14].
For this we will need some general results about the asymptotic stability of solutions of Volterra
integral equations. Explicitly, we will use the following theorem from [21], Theorem 4]
Theorem 3.4. Assume we have a equation of the form

X(t) = F(t) + /OtK(t _HG(X () dr, >0, (3.9)

such that
i) K € LY((0,00), R™*")
i) F € C°(0,00),R"), bounded and F(t) — 0 as t — oo,
i) G € CH(R™) and G(0) =0
iv) J = DG(0) is non-singular.
Then if and only if

det <Id - /0 h e_T”K(T)JdT> £0 (3.10)

for the right half plane Rv > 0 it holds that x(t) — 0.
Remark 3.5. The equation (3.9) given in the theorem above, is a Volterra equation of convo-
lution type, as the kernel depends on t — T.
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We realize that the following system can be studied independently from the other variables o}
and r

s(t) = /Ot (—S(T)Z(T) + (Vd + od(r) — Vb> 5(7)> evat=1) gr 4 2t

Vd

10) = 60p) [ (s000) + (va-+ o)~ ) (7)) Al )
. 0 (3.11)
i(t) = /0 (S(T)Z(T) + (l/d + od(r) — Vb> ’L(T)) ~yr(t — T)efl’d(th) dr,

t
0?(7’) = —/ (s(T)l(t) + (I/d + afl(T) — I/b> Z(T)) u?’y})/(t — T)eﬂ’d(th) dr.

0
Our goal now is to rewrite this model so that it fits in the scenario of Theorem Therefore,
we first need to translate the equilibrium

(3*7 l*,i*, JZd>|<)

to the origin. We define 5 =s—s*, [ =1—1*,i =14 —i* and 621 = ad O'd* with s*,1*,7* and
od* given in (3.7). Then, this means that z = z 4 z* for z € {s,l,z,o’l} which allows us to
write the equations for zZ without the term z appearing. We now show exemplarily how to write
5 suitable to the Volterra form. Therefore, we compute

5(t) = / t (—smz(T) + <yd +od(r) — yb) S(T)) evalt=") gr

t
/ —s* 1" + I/d + af* - Vb) s*) e valt=") qr

/0 s 4 Vd+0 _Vb) S*> o—vat=7) gr

+/0 (_(S(T)Z(T) — 8 1)+ (vg — ) (s(T) — 8*) + (Jld(T)s(T) _ Uf*s*)) e—valt=1) gr

0
= —/ (—s*l* + (l/d +od* — 1/b> s*) e~ valt=7) dr

+ /0 (—i(T)(g(T) 4 8*) = I5(7) + (va + 00 — 1)5(7) + 53(7)(5(7) + 3*)) evat=7) g7,

We can derive similar formulations for I, 7 and (f_fl, with analogous computations. Now, we can
write the system for s,[,7 and 6? as matrix form Volterra integral equation, that is

4 / CK(t— 1)G(X () dr. (3.12)
0
with
fO ( S*I* 4+ (Vd + O_ld* _ Vb) *) e Vd a(t—7) dr
_ 0 [2 oo (s + (va+of* — 1) ") At —7) dr
PTG Gt ot = ) #) e = st ar |
IO (571 + (vat+ o — ) i*) pPA(t — 1) dr

(3.13)
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e*l/dT _efl/dT 0 0
_ 0 PpA(T) ppA(T) 0
K(r) = 0 yi(r)e T (e 0 (3.14)
0 A (r) () 0
and
#Q“H§7§U??ﬂfi%mﬂ_%) %?
B s(7) 4+ s*) +1*s(1 B t
CEM =1 s8n)Gr) +i7) + o0 + i a—m) |© ~D=| i) (3.15)
oi(7) ai(t)

Where we used vy, and 77 defined in (2.37). We now want to verify the conditions of Theorem
in order to apply this theorem later.

i) K € LY((0,00), R*%) is obviously true.

ii) Clearly F(t) € C%((0,00),R?%) and bounded, as all integrals in F(¢) exist and are finite.
In particular the exponential function is in L' N L®on (—o0,0], 77 is an L' function by
Assumption fy}) "€ L' as it is as probability densitiy function and therefore ’Nyzd cL',
and we showed that A is an L' function in Lemma We show F(t) — 0 as t — o0
and start with the first component

0
lim (—s*l* + (I/d + 0'?* — Vb> s*) e vat=") g,

t—o00 — oo

0
= lim e”dt/ (—s*l* + (z/d + oid* — I/b> 3*) e’e” dr

t—o00 oo

0
=0- / (—s*l* + (l/d + af* - I/b) s*) e’ dr = 0.

—00

<00
The convergence for the other three components can be seen similarly.
iii) G € CY(R") and G(0) = 0 are clear.
iv) We compute J = DG(0)

U;-i* +(wg—w) O 0 s*
* s* 0 0

DG(0) = A D ottt ) (3.16)
0 0 0 1

Then det J = det DG(0) = (¢¢* + (vqg — 14))%s*. This means DG(0) can only be non-
singular if vg + Uf* — 1, # 0.

Now we want to obtain the characteristic equation
o
det <Id —/ e TYK(T)J ds) =0. (3.17)
0
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The term K(7)J is given by

e*l/dr<o_zd* +vg—up — l*) —e VAT g* 0 e VAT g*
PpA(T)* PpA(T)s* qpr(T)(JZd* +vg — 1) PpA(T)i*
Yi(T)e Tl Vi(1)e ™ 4T  p(T)e T (of* +vg — 1) yr(T)e Vi
A )l A(r)s* ) (o 4 va —w) A ()it

With this we get

M(w) := /000 e YTK(r)Jdr

Gid*JFVd*Vb*l* . sx% 0 S*
Vg+w Vg+w Vgtw
I*L(w) s*L(w) (6" +vg—w)L(w)  i*L(w)
I*Li(w) s*Li(w) (0¢* +vqg—wvp)Lr(w) i*Li(w)
PLP(w)  s'LP(w) (of* +va—v)LY (w) i*LP (w)

with
L(w) = ¢p /000 e T A(r)dr,
Li(w) = /000 e Tyr(r)e ""dr  and
LPw) = [~ el
Now we compute the characteristic polynomial

det(I — M(w))

1— Ug*"l"/d_’/b_l* Sk 0 __sx
vg+w vgt+w vg+w
— det —I*L(w) 1—s*L(w) —(0%* +vg—vp)L(w) —1*L(w)
—I*L(w) —s*Li(w) 1—(6%* +vg—w)Lr(w) —i*Li(w)
—*LP (w) —s*LP(w)  —(o¢* +vg— ) LP(w) 1—i*"LP(w)
1—s*Lw) —(oc%* +vqg— 1) L(w) —i*L(w)
d* - —J* P
= (1 _ g tYaT v > det | —s*Li(w) 1—(0%*+vg—wp)Li(w) —i*Li(w)
Vatw —s LP(w)  —(0%* +vg— 1) LP(w) 1—i*LP(w)
o —1*L(w) —( ld* + vg — vp) L(w) —1*L(w)
— n det —l*L[(w) 1-— ( 2 I/b)L[( ) —i*L[(w)
Va0 —I*LP(w) —(o° a4y — w)LP(w) 1—i*LP(w)
. L) 1-sLw)  —(08* +va— )L (w)
+ det | —I*Ly(w) —s*Li(w) 1— (0%*+vg—wp)Li(w)
Vat+w —LP(w) —s*LP(w) —(0¢* +vg— ) LP(w)
Uld*—i-ljd—ub—l* w7+ D d*
_<1 — 175L sz](w)f<yd+ai fyb)LI(w)>
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S% P L(w) s%
Vg +w Vg +w

+ I*LP (w)

Then, the characteristic equation (3.17]) becomes

Vg + w > <1—S*L(w)—i*Llj—j(w)— <Vd+0'fl* _Vb> L[(w)>

I* (L(w) — LP (w)) =: L(w).

(3.18)

S*

_l’_

Vg +w

Now we first state the theorem concerning the stability of the disease-free equilibrium.
Theorem 3.6. If R. > 1, then if vg < v and 1 —R. < (vqg—vp)Wi, the disease-free equilibrium
(s*,i*,r*) = (1,0,0) is unstable

Proof. We first show that the disease-free equilibrium of the smaller model (3.11)) is unstable.
Then at (s*,1*,i*,0¢*) = (1,0,0,0) the characteristic equation given by (3.18) reduces to

'Y

0= (1252 ) (- D) ~ - ) Li(w).
We directly see that L(0) = R. > 1 and L;(0) = W;. Then by the assumptions of the theorem
we have £(0) < 0. We also see that

lim L(w)= lim d)p/ e YTA(T)dr
0

w—r 00 wW—r 00

= gbp/ lim e “TA(r)dr =0,
0

w—r00

where we used dominated convergence, as e %7 A(1) < A(r) € L'((0,00)). The same way one
can also see that L;(w) — 0 as t — oo. This implies that

lim L(w)=1>0.

wW—00

O]

Remark 3.7. In the proof we needed the assumption 1 — R. < (vg — vp)W; < 0. This implies
that vy, — vq cannot become too large, as W; > 0. Without this condition, the birth rate can be
large enough that the proportion of infected and recovered individuals in the population vanishes.

In Section [3.2.2] we have seen that there are many cases where endemic equilibria exist, but
we have also seen that the equilibrium points are not always between 0 and 1. To see if the
an endemic equilibrium is stable or not, one could again make use of Theorem If one has
a computed equilibrium one could plug it into the characteristic equation to see if it is
stable or not. As we could not compute any general formula for the endemic equilibrium we will
omit this part here. We will instead look at this numerically in Section
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3.3 Analysis of the population size

In this section, we want to take a closer look at the population size and its long-term behaviour.
Therefore, we want to have a closer look at the derivative of the population size, as it determines
if the population increases, decreases, or is constant over a certain time interval. By (2.17)) we
get that

N'(t) = uN(t) — vaN(t) — oL (2). (3.19)

First of all, we want to take a closer look at the case, where the system is entirely free of the
disease. In that case we have S(t) = N(¢), i.e

t t
N(t)=S(t) = / N (s)e 2t =3)ds = / S (s)e v t=3) s, (3.20)
0 0

First we consider the case where v, < vy, then by (3.19)) we then know that N'(¢) < 0. Moreover,
this means that N is monotonically decreasing and with N > 0 we can deduce that N converges
to some limit N*. For this limit point, it should hold

t
N* = / vy N*evat=9)gs = N* 2. (3.21)

o Vd

but this is only possible for N* = 0. As one would expect, v, < v4 implies that the population
is going to die out. In the case v, > vy N(t) is monotonically increasing, but is not bounded
from above. This means that the population will blow up.

Now we want to take a closer look at the case where the system is not free of disease. This
is way more complex as the behaviour of 05 (t) cannot be predicted before solving the integro-
differential equation for the SECIR-type model given in Section[2.2l However, we want to use our
results from the previous part about the analysis of the normalized model. From the previous
section, we know how o¢(t) behaves. We assume for now on that the relation o7 (t) = N(t)od(t)
is true, as this was the idea for the normalization. In the case of the disease-free equilibrium we
have seen that lim;_, o Jff (t) = 0. And as the name already says it is disease-free, therefore, we

are in the case of (3.20). We will have a closer look at this later on in the Section about the
implementation.
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4 Discretization

Before, we have analysed the continuous model. However, we also want to analyse the discretized
model numerically. First of all, to validate the results from Section [3] Moreover, we want to
get an idea of what happens in the cases, where we were not able to state a theoretical result.
In order, to do so we discretize our SECIR-type birth-and-death model given by and
the normalized model given by . Later on, in Section we are going to show that the
numerical scheme preserves the main properties, such as non-negativity. As in [15] and [§],
we will use a non-standard discretization scheme to discretize the force of infection term, the
transitions and most of the compartments. For the remaining compartments and the other
model parameters we will simple use a rectangular rule to approximate the integrals. In our
case, non-standard means to mix left and right point approximations. Simply using a standard
rectangular or trapezoidal rule would always mean that we have to solve a non-linear system
of equations, meaning we would need to use a Newton algorithm. By using a non-standard
scheme we can avoid that. Moreover, as shown in [8], the non-standard scheme preserves some
properties of the model, as non-negativity, even for large step sizes. In [8], the authors show
that this is not necessarily the case if the trapezoidal rule is used. In the following, we will use
the notation 7 for the discretized version of some parameter x.

4.1 Discretization of the parameters used for all models

Here we start by defining the numerical scheme for those parameters that are shared by both
models. For a given step size At > 0, we define t,, := nAt, for n € N, to define an uniform mesh.
We will approximate the derivative of ;2 by a backwards difference scheme, i.e
z2 t _ z2 t
72t ) = ) 205 ), (4.1
Then, since by Assumption [2.1]v7?(t) is decreasing, it holds that 772/(¢,) > 0 for all n € N. The
term B used in the definition of the force of infection term is approximated using a standard
rectangular rule using a left approximation, as in the non-standard scheme we always use a
left-approximation for the functions vZ2. Then B is given by

k-1

B(ty) = At &1(t) 1t péAY (ths), (4.2)

1=0

with B(0) = 0. Then, as 75 (ty_;) < 0, it holds that B(t,) < 0 for all n € N. Finally,
the integrals in the definition of A, given in (2.21)), are also approximated with a standard
rectangular rule using a left approximation. Then for & > 0

k—1

ay(ty) = —At Z Eo(t)ve(t)Ts (tr—i),

=0

AtZAC’ te—i)B(t:),

A(tk) =e thk (al(tk) + a2(tk)),

(4.3)
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with A(0) = 0. Then, A\(tn) > 0 for all n € N. Lastly, we want to discretize the model
parameters introduced in Section We start with the reproduction number ((3.1))

=op > Alty). (4.4)
=0

The discretization for 772 (3.2) is given by

T2 ==Y e R (n). (4.5)

i=0
Using this the discretization of V* (3.3]) is given by
Pl Do,
— 9iﬁh7
_DhT,
_ 9u7\—d
= VT + VT + VT + VUT]

(4.6)

We discretize W, (3.4]) by

1=0

These sums are all infite sums, which clearly cannot be evaluated, therefore we need to cut off
these sums in the implementation. We will comment on this further in Section

4.2 Discretization of the SECIR-type birth-and-death model

In this section we define the numerical scheme for the SECIR-type birth-and-death model from
Section 2.2 We start by defining

&S( n+1) §< n—‘rl)}\\(tn), (4.8)

which is a non-standard numerical scheme, which means that we have a right endpoint approx-
imation in S and a left endpoint approximation in . Using a backwards finite difference scheme
for S’ gives us

S1\(1571-1—1) — §<tn) )

o~ B
S (tn—H) - At

Moreover, by the definition of S given in (2.15]) we have

S (tns1) = —55 (tns1) + N (tng1) — vaS(tat),
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but as we will start by computing S in every step we do not know the values for the other
compartments at ¢,41 yet. Therefore, we will use the following formula, where we know the
population size N (t,), from the computations of the previous time step,

S (tnr1) = —58 (tns1) + N (tn) = vaS(tns1)-
All together, this yields

S(ter) = S(tn) + AtvpN ()
T At + )

(4.9)

In order to discretize the force of infection term we start by discretizing Ag. Therefore, we define

o(tr) = dp(Co(tr)éc(tr) + Lo(tr)Er(tr)) (4.10)

Then the discretization of \g from ([2.14)) is given by

(tk)
N ()

)

Xo(ty) =

2

Then we discretize f given in (2.23) by

~

F(ty) = EoA(ty) — Coe " B(ty,), (4.11)

where B(t),) was given in and A(t),) was given in Now we discretize the force of
infection term by again using a non-standard dlscretlzatlon Where we use a rectangular rule
with a right approximation in S and a left approximation in A and M. Then, for n > 0 we obtain

Altni1) = N‘ﬁ” <¢< ni1) + AtZA nt1-3)S () A () + ﬂtnm) , (4.12)

(tn+1> i=0

with /):(O) = Ao(0) = 0. Analogously, we approximate the integrals of the remaining transitions
using a non-standard rectangular rule with a right endpoint approximation in 032 and a left
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endpoint approximation in e~"47

GE(tns1) = §<tn+1>X<tn>

65 (tnt1) ——Atzas tipq e Vatnti-

tn
(n—l—l __AtZUE H—l ~Vdin+l-

3g(tn+l) = —At Z /U\g (ti+1)€_ydt”+1—

=0

n
o1 (tas1) = —At Y Gh(tipr)e e
=0

57 (tn+1) Z—Atzf’c (tig1)e "t

9 (tnt1) ——AtZaI (tigr)e Vatn+i-

n+1

Gri(tni1) = —At Y G (tigr)e dinris

=0

2 : t
( n—i—l — —At UH H—l —Vdln+41

G{H(tns1) = —At Z G (tipr)e Vit
=0

AR (tns1—i) — e

and 722/

160/(tn+1 Z> —e€ thnHEO'YE (tn—H)
I~

AL (tnv1—i) — e I CoutAE (tnt),

(1= HEAE (tarr—i) — e 441 Co(1 = pE)AE (ta),

A (tpgr—i) — € Top T (tga),

S (L= A (tngr—i) — €7 o (1= i AT (tasn),

ea (tngr—i) — e Hoplg Vg (taya),
W1 = p)AR (tnga—) — e V" Ho (1 — p3)A8 (tng),

—l/dt

et Uo,uga[[]) /(tn-i-l)a

“(L = g A0 (i) — €7 0o (L — pf )AL (tn)-

(4.13)

By Assumption we assume that we have infection age ty = 0, all flows should be 0 at time

to and we get the starting value

We will discretize the compartments F,

522 (tg) = 0. (4.14)

C,1,H,U,D and R by directly applying a discretization
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scheme to the integral model formulation in (2.15)) and obtain for n > 0

n
E(tni1) = AtY i (tar1—i)e " 1=58 (tip1) + Eo(tns),
=0

n
C(tny1) = At Z Yo (tng1—i)e =G (4 1) + Co(tnt),
=0

~

n
I(tng1) = ALY yrltag1-i)e =G (ti) + To(tns),

1=0
n
H(tni1) = At Y yi(taga-i)e "G (ti1) + Holtnta), (4.15)
1=0
n
Ultnsr) = ALY o (tnr-i)e =G5 (tir1) + Un(tnt),
=0

n
R(tng1) = At (68(tip1) + 67 (tip1) + 6o (tir1) + 5 (tig1)) € 4= 4 Ro(tn 1),
1=0

D(tn41) = At Y G0 (ti1) + Do
=0

For the compartments E,C,I, H U and R we use the non-standard rectangular rule, with a
right approximation for the transitions 072 and a left approximation for 772 and the exponential
function. For D, we just used a standard rectangular rule with right approximation since the
transition to D is the only function in the integral for D. We us the following starting values to
initalize the compartments

)

§(t0) = S, (to) = Ey,
Clto) = C 1(to) = Io,
Olto) = Co Ity =1o (4.16)
H(to) = Ho, U(to) = U,
ﬁ(to) = Ry, ﬁ(to) = Dy.

Finally, we also want to discretize the reproduction number R, defined in .AFor this we
simply use a standard rectangular rule and the already defined approximation of A

Re = ppAtY A(t;). (4.17)
=0

4.2.1 An update scheme for the compartments

In [I5], another approach was used to derive a discretization for the compartments by using the
definitions of the derivatives of the compartments. This led to an update scheme which is more
efficient in the implementation. Therefore, we want to derive such an update scheme for our
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birth-and-death model. To do so, we will make use of . By using a backwards difference
scheme for the derivatives of the compartments we get an update scheme for the compartments
E,C,I,H U, D and R. As we compute the compartments differently than by using the scheme
from the results for the compartments may be different and therefore we might get another
value for the total population. This implies that also the values for the susceptibles §, the force
of infection A and the transitions 022 might be different. To clarify the different discretization
schemes we will refer to all the variables computed by this discretization scheme as 2. Moreover,
we will refer to the discretization scheme given by as sum-scheme and to the following
scheme by update-scheme. The formulas for the compartments are given by

i 1 . . 3
E(tni1) = 1+ Aty (E(tn) + Atag(tn-&-l) - Atgg(tn—l-l)) )
. 1 . ) V .
Cltng1) = T3 a0 (C(tn) + AteG(tns1) — Atol(tns1) — AtoE(tt))
. 1 . . . .
I(thy1) = 1+ Aty (I(tn) + Atgé(twrl) - Atg}{(tn+l) - Atgﬁ(twrl)) )
& 1 & ~H ~U ~R
H(tpi1) = 1+ Atvg (H(tn) + ALST (tny1) — Ato g (tns1) — AtJH(tn+1)) )
. 1 > U - D R
Ultnt1) = 1+ Aty (U(tn) + Ato g (tns1) — Atoy (tngr) — AtUU(tn—H)) ;
. 1 .
Rltny1) = T a0, (R(t) + AtGE(tns1) + At F (tns1) + Atot (tnr1) + At5 G (tnr)) s

D(tm—l) = D(tn) + At&g(trﬁl)'
(4.18)

With the same starting values as used for the sum-scheme. Note that this scheme is more
efficient than , as it is an update formula and we do not need to approximate the integral
with a sum, that needs to be computed in every iteration step. On the other hand, the sum-
scheme makes it easier to see some nice mathematical properties of this scheme. In [15] it is
shown that the two numerical schemes are equivalent, in our case this is not the case. The
problem is the exponential function used for the probability of surviving natural death. In [I5]
they used the fact that the derivatives of the transition distributions ;2 are approximated by
a backwards difference scheme to prove that the two schemes are equivalent. We also used a
backwards-difference scheme to approximate 'yjf’ , but for the exponential function we never
needed to approximate its derivative, as we used its explicit form when deriving the formulas
for the flows (2.18)). However, we are able to show the following result. R

Proposition 4.1. Under the assumption, that for some t,, we have that Z(t,) = Z(t,) for all
Z e{S,E,C,1,H,U,R,D} and that 632 (tn+1) = 622 (tny1) for all suitable

21,20 € {S,E,C,1,H,U, R, D} we can show the following:

1. For Z € {E,C,I,H,U, R} it holds Z(tni1) < Z(tns1),

2. D(tpi1) = D(tns1).

Proof. We first show the statement for C', the proofs for F, I, H and U follow analogously.
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In the following we will use the following estimate of the exponential function
e > 1+
We start by computing the difference of two consecutive time steps and get

Cltnrr) = Cltn) = ALY (erb(tnri—i) + (1= ey (ts1s)) e a1 5L (ti41)
=0
n—1

— ALY (e (tai) + (1= pENE (i) €715 (tira)
=0

+ 60(tn+1) - 60(tn)
= At (e (0) + (1 — pE)vE(0)) e 705G (tng1)

n
+ ALY (oA (=) + (1= pE)E (bngr—i)) € 411G E (i)
=0

n
= ALY (pEVE (i) + (1= pE)vE (b)) eV dint1=i e aBiGE (L )
1=0
+ e Y1 O (uEE (tngr—i) + (1 — pE)VE (tn1-1))
— e Vit B Gy (Ui (tni) + (1 — pE)VE (tns)) -
< A5G (tn+1)

n
+ ALY (pEE(tna—i) + (1= pE)VE (1)) €75 G (ti4)
1=0

n
— ALY (pEVE(tni) + (1= )V (b)) € 171 (1 + Atvg)5G (tiga)
1=0
+ e G (uEVE (tnar-i) + (1= pE)VE (tnga—i))
— e Y (14 Atvg)Co (BoVE(tnri—i) + (1= o) V8 (tns1-i)) -
= A5G (tns1) — AtrgClty)

n
+ ALYl (A (tngr—i) = Ab(tni)) e 411G (ti11)

=0
n
+ ALY (1= pé) (A8 (tnsr—i) = A8 (tns)) e 115G (tig1)
=0

e Y Copdy (Fe(tnsi—i) — A& (tn—i))
et Co(1 = u) (7 (taa—i) = 7 (tn))
= At&g(thrl) — AtyyC(tn)

n
At + ) e G () uEAE (te1)
=0
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4 e Vdtnt1 Colié:}’\é/(tn+1)

n
+ ALY eVt tiG G () (1= o)A (tnr)
i=0
+e Vit Co(1 — pG)AE (tns)
= —AtvyCtn) + At5G (tnt1) — AtGE (i) — AGE (1)

From this and the assumptions of the Propositions that 672(t,11) = 622(tn41), we get

—~ 1 . R R ~
Cltns1) < T A, (C(tn) + At6 G (tny1) — AtGE(tnt1) — Atag(tn+1))
1 * ~ pa ~
= T A, (C(tn) + At5G (tps1) — Ateé(tnsr) — AteE(tns))
= é(tn+1)

For the discretizations of R we use that for all x < 1, there holds

1
1—a

e’ <
With this we can compute

n
R(tni1) = At (G8(tir1) + 57 (tig1) + G (ti1) + 5F (ti1)) e intii 4 emvatnsi Ry
=0
n

= ALY (G8(tir1) + 7 (tiva) + O (tir1) + 0 (ti1)) e din—iem A 4 gmvalnemvalMl Ry

=0
- 1
< At Z (@6 (tir1) + 01 (tig1) + 05 (tira) + 0 (tig1)) e_ydt"fim
=0
1
—Vgtn
te 1+ y At Fo
1 5 ~ ~ ~ ~
- (R(tn) AR (b)) + At () + AGE (b)) + Atag(tnﬂ))
14+ ygAt
1 .
= ———— (R(tn) + AtGE(tns1) + At (tny1) + Atof (tnsr) + At5 (tnr1))
1+ v At
- R(tn+1).

For D we simply compute

n
D(tns1) = At> 58 (tir1) + Do
=0

= D(tn) + 7 (tn+1)
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Remark 4.2. The result of Proposition only holds for one time step, if we initialize both
schemes with the same data. The issue in showing the relation for all time steps comes from the
definitions of A\ and S. With the previous proposition we get for N

N(tnt1) = S(tns1) + E(tnsr) + Cltns1) + I(tug1) + H(tnr1) + U(tnsr) + Rltns1)
< S(tns1) + Eltns) + Cltasr) + I(tns1) + H(tns1) + Ultns1) + Rltni)

= N(tps1).

A

But for example, in the formula for S we divide by N which makes it impossible to show the
inequality S < S.

From now on we will use the sum scheme given by (4.15)) if not stated differently.

4.3 Discretization of the normalized SECIR-type birth-and-death model

One way to get normalized compartments is to compute z(t) = (( )) for Z € {§ E,.C,1,H,U ﬁ}

after computing the nonnormalized compartments Z. But, as we were not able to show that
our normalized compartments are actually z(t) = Ji(? we also want to derive a numerical
scheme for the normalized model from Section In Section we will compare the two
different approaches to compute the normalized compartments and observe that we get similar

results. For the initial values of the normalized model we simply use zp = f,—g. With similar

computations as in Section for S (4.9) we get the following discretization of §

:9\(75 ) + Atl/b

1+ At (1( n) + vy — 4 (tn))' (419

8(tnt1) =

We continue with the numerical scheme for the force of infection term [ (2.34)). First, we describe
the numerical scheme for g - that is similar to f in -

G(ty) = eoA(ty) — coe "™ B(t},). (4.20)
The discretization of I is given by
lo(tr) = dp (co(tr)ec(tr) + io(tr)Er(tr)) - (4.21)

The force of infection term given by ([2.34) is, similar to -, discretized by a non- standard
approximation. We use a rectangular rule with a right approximation in s, €, 7 and & o4 and a
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left approximation in /T, B ,Bc, By and 1. Then for n >0

o~

Wtnsr) = lo(tns1)dpG(tnsn)

~

+ ¢pAt z": Altns1-4) (§(tz’+1) (t:) + (Vd + 4 (tir) Vb) g(tz'+1)>

1=0

n (4.22)
+ ¢p Z (l/d + 35(t¢+1) — Vb> e Vdtnt1-i
i=0
- (@t41) Boltaa—i) + (1) Br (b1 i) = &tis) Bltnsa ) )
with 1(0) = 15(0).
The flows from s to e and e to ¢ are given by
0 (tng1) = U(tn)s ( nt1);
Oc(tnt1) = —At Z GE(tir1)AR (bng1—i)e atnimi — e7Valnteoy T (1, 11) (4.23)
i=0 .

n
—AtY (ud + 50 (ti) — ub) ()RS (b sy s )eVitni—i,
1=0

Now, we define the numerical scheme for the remaining flows. The first integral is approximated

with a non-standard rectangular rule as in (4.13)), the second integral is approximated with a

standard rectangular rule using a left approximation. Given the flow from z; to z the flows z to
zo and z to r are given by

02 (tnt1) = —AtZG (L) A2 (b —i)e Vit — e 7Vt 222322t 1)
- At Z (”d +Tu(t) — ”b> 2t A2 (tnpr—g)e” ",
=0
GL(tn1) = —At > GZ (tig1) (1 — p22)722 (tnpr—i e amti=t — eVttt (1 — )77 (tng1)
2\In+1 21 \Lit1 K= )2 n+1—i 0 ,uz Yz n+1

n
— At Z (Vd + 35(15@') - Vb) At (1 — p2)A" (tngr—i)e Vitnti-i,
i=0

(4.24)
As above we have 03?(tg) = 0, for all suitable combinations z1, zs.

Lastly, we define the numerical scheme for the remaining compartments by
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n
Eltnsr) = At Y AG (tapai)e 00 (G5 (tirn) + (va+5Ut) — 1) €(t) ) + eoltas),
1=0

n
Cltns1) = ALY A0t -i)e 1= (G(tian) + (va+ Folt) = 1) Tt ) + coltnr),
=0

(tn+1) AtZW n1i)e i (3é(ti+1) + (Vd +ou(ti) - Vb) it )) + io(tnt1),
(4.25)
h(tns1) = At Z Yir(tng1-)e ™ 0= (G00) + (va+ F4(0) = ) B8)) + holtnr),

1=0

u(tny1) AtZ’YU (tng1-i)e Va1 (5?5(%1) + (Vd +a(t) — Vb) ﬂ@z‘)) + uo(tnt1),
1=0

(tns1) = At Z b (5 (1) + (va+ Gt = 1) (1) ) + Totn),
with 6" = 67 + 67, + o] + o7,

4.4 Properties of the numerical schemes

In this section we want to show that our numerical scheme preserves all the important properties,
such as non-negativity, of model 2.15 -We start with the discrete version of Lemma [2.12]
Lemma 4.3. For A given by (4.3) it holds that

> Aty) < oo (4.26)
k=0

As for Lemma [2.12] we are going to need some properties of convolutions. In the discrete case
for p,q : Z — R, convolutions are defined as follows

(pxq)lnl = Y plklgln — k]. (4.27)

k=—o00

Lemma 4.4. For all p,q: Z — R the following inequality holds true

[lp* qllx < [lpll1llql]1- (4.28)

Where

lall = 1£[n]
n=0
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Proof. We apply Young’s convolution inequality to the following L!'(R,R) functions given by
the sequences p and q

Zp zz+1]

1EL
Z q*] X z—l—l]
1EZ
The claim follows because (P * Q)(k) = (p * q¢)(k) and the L' norms agree. O

Now we are able to prove Lemma

proof of Lemma[{.3 At first we see

> &olts) (Vb)) + 1= pEEt) <0 (V) + 48 @)
=0

=0

Moreover, we know by Assumption that ’yé,q/g € L'((0,00)). Then, since ’yé and 'yg are
monotonically decreasing, by the integral criterion for the convergence of sums, we can conclude
that

> &olts) (EvE(t) + (1= pEE () < oo
i=0

With the same argumentation, we also have that
> &r(ty) (i Ar () + (1= i F(ty)) < oo.
j=0

AI/

Now, we consider 7 'y "and 7%/. As both computations are the same, we only do them for ﬁg’ .

j :A z : } +1

=0 At
1 c
— 5 (Jm_2Elexen) 25 ()
1
L

Now we can show the claim with the same argumentation as in the proof of Lemma using
Lemma (4.4 O

Remark 4.5. Lemma directly implies that limg_, o g(tk) =0.
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As we only consider with non-negative solutions, we now want to make sure that the numerical
scheme preserves the non-negativity.
Theorem 4.6. For non-negative initial data, i.e. Sy, Fo, Co, Iy, Hy, Uy, Ry, Do > 0 we have

1. §(tn) >0 for alln € N,

2. for all suitable combinations 21,2z € {S,E,C, I, H,U, R, D} we have that 622(t,) > 0 for
alln € N,

3. forall Z e {E,C,I,H,U,R,D} we have Z(tn) >0 for alln € N,
4. A(tn) >0 for alln € N.
Proof. We are going to prove this theorem by induction. For n = 0, all statements are true by

assumption on the initial values. We assume that the statements hold for n and we show them
for n + 1.

1. By using the induction hypothesis we directly see that, for S given in (4.9), we have

. S(t,) + Aty N(t,,
S(tn-i-l) = S( )+A 7 ( ) > 0.
1+ AN (tp) + va)

2. First of all, by using the induction hypothesis an the estimate above we directly get
5 (tns1) = S(tn+1)A(tn) > 0. From this we immediately see that all the other transitions
are non-negative.

3. As we have just seen, all transitions are non-negative therefore the compartments are also
non-negative at time ¢,,4+1 as we only sum over non-negative parameters and Zy > 0.

4. Moreover we have

n

< < b ; G 1 o0+
)\(tn+1) - )‘O(tn+1) + AiAt A(tn+17 )S(t +1))\(t ) + Aif(tn+1)
—— N(tas1) 2. PO Nitan)
B >0 >0
> 0.
This concludes the proof. O

Remark 4.7. By Proposition[].1 we also get the statements from the previous Theorem[{.q for
the update discretization scheme given by (4.18)), but only for one time step. Therefore, we will
mainly use the sum-scheme given by (4.15)) in the implementation.

Since the normalized compartments are expected to behave like the non-normalized compart-
ments divided by the population size, we expect the discretized normalized compartments to
be non-negative as well. However, the proof of Theorem [4.6] does not carry over so easily. The
reason for this is that the normalized compartments have the factor

52 (tin) + (va+ 5(8) — m) B(L),
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for which it is not clear why it is non-negative. Nevertheless, the numerical results suggest that
the following conjecture holds.

Conjecture 4.8. For non-negative initial data, i.e. sg, eq, co, to, ho, Ug, 70, dg => 0 we have
1. 5(tp) >0 for alln € N,

2. for all suitable combinations z1,22 € {s,e,c,i,h,u,r,d} we have that 52(t,) > 0 for all
n €N,

3. for all z € {e,c,i,h,u,r} we have Z(t,) > 0 for alln € N,

~

4. U(tn) >0 for alln € N.
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5 Implementation

Now, we use the numerical scheme described in Section [4] for the implementation of our model.
We will shortly describe the implementation structure and then use the implementation for some
numerical experiments. We implemented the models in C++ as a part of the high performance
modular epidemics simulation software MEmilio [22]. The relevant issue can be found hereﬂ

5.1 Description of the implementation structure

In this section, we briefly describe the implementation structure for the SECIR-type model.
The implementation of the SIRD-type model has the same structure. The class structure can
be seen in Figure All in all the idea of the implementation is to iterate over all time steps
and compute the compartments, flows and force of infection term in every time step. In the

Used for the Implementation of the standard Used for the Implementation
birth and death model. of the normalized birth and death model.

[ class Parameters ]

*}[class CompParameters%

friend class ‘ friend class
I
|
I

class Model ! class NormModel

|
|
I}

friend class friend class

class Simulation

Figure 7: Class Structure of the Implementation

class Parameters, all given model parameters, are implemented meaning we set all parameters
from Table [I] Then, in the class CompParameters we compute all values that can be computed
before starting the iteration of the simulation.

1. We start by computing the maximum support of the transition distributions ;2. Either
they actually have a maximum support, or we define some tolerance € and the maximum
support is the smallest ¢ such that v72(f) < e. We know that such a point exist for all
possible transition distributions, as Assumption gives us that they all converge to zero.
We will use this fact in the computation of all functions and parameters calculated in

"https://github.com/SciCompMod /memilio/pull /1358
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this class, meaning we only evaluate the functions for all time points smaller than the
maximum support of the transition distributions.

2. Then, we compute the weighted distributions vz given by (2.12) and the derivatives of the
transition distributions using a backwards difference scheme, as given in (4.1]).

3. After this, we are able to compute B given by (4.2)) and A given by (|4.3]).

4. Then, we compute the initial value functions used for the force of infection term, meaning

the functions @ (4.10) and f (£.11)) for the standard and the functions Iy (£.21)) and g (#.20)

for the normalized model.

5. Finally, we can compute the constants R, (£.4)), ’tzf 45), V* ([&6) and W, (4.7), that are

used for the model analysis. These constants are infinite sums, but we make a cut-off and
neglect all the terms after the maximum support.

In the classes Model and NormModel we define all functions needed in the iteration.

1. We start by computing the susceptibles, given by (4.9) and (4.19).
2. After this we compute the transitions given by (4.13]) and (4.24)).

3. Then, we compute the other compartments. In the class Model, we compute the com-
partments twice, both with the schemes given by (4.15) and (4.18]), the scheme for the
normalized compartments is given in (4.25).

4. In the class Model we then also compute the current population size.

5. At last, we compute the force of infection term given by (4.12) and (4.22).

The class Sitmulation is used to run the actual simulation, by calling the functions defined in
the model classes.

Now that we have described the structure of the implementation we want to comment on the
computational cost. In general, solvers for models based on integro-differential equations are
much less efficient than models based on ordinary differential equations. Also, the Volterra
structure of our equations does not allow for an update scheme when evaluating the integrals,
as we need to compute the whole sum in every time step. One way to make the implementation
more efficient would be to use the update scheme using the equations of the derivatives given
in . We haven given such a scheme in Section m However, we have seen that this
scheme is not equivalent to the scheme using sums given in . Besides, we still need to
evaluate the transitions by a sum.

Nevertheless there are some ways to make the implementation more efficient. First off all, the
class CompParameters computes the parameters in advance that are needed several times in
the iterations for both models. Moreover, the use of the maximum support, as described above
is an important way to increase the efficiency. First, this means we need to store less values
for the parameters computed in the class CompParameters. Furthermore, the sums we need to
compute in the iterations become shorter. We see this for example in the computation of the
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transitions. The transition from E to C' is given by
n
55 (tny1) = =AY 58 (tip1)e " =35 (tny1-0) — e Y BAG (tn ).
=0

Here we can make use of the maximum support ﬁg We evaluate fyg at time point t,41_;. If
the maximum support of ﬁg is t,, this means that the sum starts at max(0,n + 1 —m). One
other possibility to make the implementation more efficient in terms of storage is not to store
the total population for every time step. In the computations we only need the number of the
total population of the last time step therefore one could overwrite this number in every time
step. In our case, we want to analyse the total population, therefore, it is interesting for us to
store it for every time step.

5.2 Choice for transition distributions

Here we introduce some possible choices for the transition distributions 7:2. As mentioned
in Remark [2.3] the transitions distributions are survival functions of probability distributions.
One possibility is to use the survival function of exponential distribution, that depend on some
distribution parameter a, and is defined by

erpy(z) = e . (5.1)

However, as already mentioned, the exponential distribution is rather unrealistic for the stay-
time distributions vZ2. But we are going to use it for demonstration purposes and other paramet-
ers, such as 7. Another possibility is to use a ”smoother” cosine function. It is constructed as a
C' transition from zero to one, and was introduced in [23] for similar purposes. The ”smoother”
cosine depends on some distribution parameter a and is defined by

1 ifz<0
smoothcosqa(r) =  Scos (Z +3) if0<z<a. (5.2)
0 ifx>a

In [24], the authors use the lognormal distribution as a stay-time distribution to model COVID-
19. Therefore, we will also use the survival function of a lognormal distribution, as a possible
transition distribution. The probability density function of the lognormal distribution looks as

follows
b logz(%)
fan(@) = ax\/2m P ( 2a2 ’

with a some shape parameter and b some scale parameter. For the survival function of the
lognormal distribution we write lognormg(z).
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5.3 Results for the normalized SIRD-model

First we set all the given parameters we use in the implementation of the normalized SIRD-
model. As initial values for the compartments, We set Sp = 100000, Iy = 30, Ry = 0, and Dy = 0.
We recall that zp = N(O) Moreover, we use uI =0.1, » =10, p=0,1 and &;(t) = expos(t). If
not stated 0therw1se we 3 will use >y = 4- 1073 and vg = 3-1073. In order to derive different values
for the parameters RC, T and W we will use different functions for the transition distributions
vz2. In Section (3 I we have seen that the existence and stability of equilibria strongly depends on
these parameters. We start with v2(7) = vE(r) = smoothcoss(7). This yields R. = 0.875477,
'Td = 0.0991046 and W = 2.98914. For this case we have seen that the disease-free equilibrium
is stable, as RC < 1. The results for this case can be found in Figure |8 and as expected one
directly sees that the model converges to the disease-free equilibrium.
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g 0.000100 ﬂ 0.99925
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Figure 8: Evaluation of the normalized SIRD-model: force of infection term and compart-
ments of the normalized SIRD-model, using v, = 4- 1073, v = 3- 1073 and vP (1) = vE(7) =
smoothcoss (7). In this scenario the reproduction number is smaller than one.

Now we want to use vP (1) = vE(1) = smoothcosg(r). Then we have Re = 1,14681, ’?‘d

0.0986605 and W = 4.47186. In this case we expect the disease-free equilibrium to be unstable
as 1 — R, = —0.14681 < —0.00447186 = (vg— Vb)W and R, > 1. If we compute the equilibrium
for these parameters, we get ¢] = 10.2006 and 5 = —0.0156379, which are not feasible equilibria
for a normalized model. Nevertheless, surprisingly, in Figure [9] one can see that the model is
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converging to some endemic state. A possible explanation for this might be that the model is
converging to a state that is not an equilibrium of the model.
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0.005
—_
= — 0.95
= 0.004 =
=
c 0
e o 0.90
] 0 X
9] 0.003 2
L e
£ o002 2
u— O 085
o %
8 0.001 >
= V2]
LE 0.80
0.000
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Simulation time [t] Simulation time [t]
0.0175 0.20
0.0150
0.15
0.0125 —
: ::T
= =
£ 00100 =
—_— T 010
8 0.0075 g
401 (]
>
Q00050 o
c O 005
e [}
0.0025 o
0.0000 0.00
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Simulation time [t] Simulation time [t]

Figure 9: Evaluation of the normalized SIRD-model: force of infection and compartments
of the normalized SIRD-model, using v, = 4 - 1073, vy = 31072 and 7P (1) = E(7) =
smoothcosg(T). In this scenario we have a reproduction number larger than one and R, >
(Va — vp)Wi.

Now we set v, = 0,1 and v4 = 0,02 and choose vP (1) = vE(7) = smoothcosi2(T). Here we get
R.=1,27147, 7;d = 0,0879308 and W; = 6,09514, then 1 — R, = —0,127147 > —0, 4876112 =
(vg—vp)W;. For this case, we were not able to show that the disease-free equilibrium is unstable,
but we also did not show that it is stable. In Figure[I0Jone can observe that the model converges
to the disease-free state.

5.4 Results for the SECIR-type birth-and-death model

In this section, we want to use our implemented numerical scheme to analyse the SECIR-type
model numerically. The theoretical results were only formulated and proven for the SIRD-model,
in the section above we already investigated at the SIRD-model numerically. For the SECIR-
type model, we expect to get similar results. We introduced the SIRD-model as the theoretical
analysis of it is less complex. However, the disease dynamics of the SECIR-type models are more
interesting than the dynamics for the SIRD-model, as it is way more detailed. Therefore, the
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Figure 10: Evaluation of the normalized SIRD-model: force of infection and compartments
of the normalized SIRD-model, using v, = 0.1, vg = 0.02 and vP (1) = vE(1) = smoothcosia(7).
In this scenario we have a reproduction number larger than one, but R, > (vg — vp) Wi.

main goal of this section is to see the long-term behaviour of the SECIR-type model. However,
in a first step, we compare the two numerical schemes, the sum scheme and the update
scheme for the compartments, and want to show numerically that the normalized model
from Section is a suitable normalization of our model from Section Then we start by
analysing the results for the normalized model, and then we consider the non-normalized birth-
and-death model. In the theoretical part, we shortly discussed the influence of different choices
for the birth-and-death rates on the model. Therefore, we then study this question numerically.
At last, we will make some comments about the convergence of the numerical scheme.

5.4.1 Choice of parameters

In this section we provide initial values and parameters used in the SECIR-type model. In all
examples, we will use So = 100000, Ey = 0, Cy = 10, Iy = 20, Hy = 0, Uy = 0, Rp = 0 and
Dy = 0 as initial values for the compartments. Moreover, we will use the parameters given in
Table 2l The birth rate given in Table [2|is larger than the death rate, in Section [5.4.6| we will
discuss different choices for the birth and death rate with varying difference, to see the influence
of them on the model behaviour. As we will model many time steps, we chose At = 1. In
Section we will briefly discuss the behaviour of the numerical scheme when At becomes
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Parameter | Choice for Parameter | Parameter | Choice for Parameter
,ué 0.8 10} 10
pit 0.1 p 0.1
1y 0.2 ¢a(t) expo.5(t)
ne 0.4 &i(t) expo.5(t)
vy 4.1073 Vg 3-1073

Table 2: Choice of the parameters used in the examples.

smaller. If not stated differently, we will use the parameters in this section in the following.
Moreover, in Table [3| we give three different choices of the transition distributions, that we will
use several times in the following. We will refer to them as three different scenarios. Then

Survival function Distribution
Scenario 1 Scenario 2 Scenario 3

'yg(t) smoothcosa(t) | smoothcosg(t) | lognormg.s.a.2(t)
7L (t) smoothcosa(t) | smoothcosg(t) | lognormo.7,0.8(t)
&) smoothcosa(t) | smoothcosg(t) | lognormo.2.7.7(t)
~H(¢) smoothcosa(t) | smoothcosg(t) | lognormg.7.s.3(t)
vR(t) smoothcosa(t) | smoothcosg(t) | lognormg.2.7.s(t)
Y (t) smoothcosa(t) | smoothcosg(t) | lognormi.o.g(t)

vE(t) smoothcosa(t) | smoothcosg(t) | lognormg.s.i7.1(t)
v () smoothcosa(t) | smoothcose(t) | lognormg.as(t)
(1) smoothcosa(t) | smoothcosg(t) | lognormg.s.i7.1(t)

Table 3: Different choices for the survival functions.
Scenario 1 yields R. = 0.498502, Scenario 2 R. = 1.73317 and Scenario 3 R, = 3.42176.

5.4.2 Comparison of the two different discretization schemes

In Section 4] we introduced two different discretization schemes for the compartments. The
purpose of this section is to see the results of Proposition We will use the parameters given
in Table A In :Table we can see that as expected by Proposition we ﬁnd that after one
time step S = S and D = D and for the other compartments we have Z < Z. We also see that
after ten time steps we still have Z<Zforall Z ¢ {S,E,C,I,H,U,R}. But for D we see that
in this case Z > Z after ten time steps.

5.4.3 Comparison of the normalized compartments

We were unable to rigorously prove that the normalized compartments defined in actually
match the compartments defined in , meaning that z = % In particular, we did not
use the same force of infection term, therefore it is unclear how closely both models match.
Moreover, we were not able to use the exact same numerical scheme due to the second integral
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~v = smoothcos(4.0)

n=1 n =10
Compartment Z(t1) Z(t1) Z(t10) Z(t10)

S 100069.89833907 | 100069.89833907 | 100653.95494754 | 100653.98511122
E 25.54007998 25.55332099 72.46965325 73.29714526
C 12.23901983 12.24536504 62.85941093 63.52566862

1 18.44952649 18.45909148 43.82889354 44.28739667
H 0.26937771 0.26951737 3.80991366 3.84421183

U 0.00786626 0.00787033 0.64438970 0.64929654

R 3.29675025 3.29676505 191.54494683 191.54775729
D 0.00053985 0.00053985 0.65830792 0.65830723

Table 4: Comparison of the two discretization schemes for the compartments, with

smoothcos(4.0) as Transition Distribution.

in the definition of the compartments of the normalized model. Due to this and approximation
errors, we do not expect to obtain the exact same results numerically, for both approaches. We

define the normalization error for the compartments as zerror = ’% — z(t)‘. The errors and

the compartments S,I,U and R, in Scenario 2, can be seen in Figure The structure of
the compartments F,C,I, H and U is the same and we expect to the get errors of the same
magnitude. In the plots on the right of Figure where both versions for the normalized
compartments are plotted one can see directly that the behaviour of both is very similar. In
the errors on the left one can see that the error is always one or two magnitudes smaller than
the size of the compartment. In the plots of both normalizations for the compartments one can
moreover see that the long-term behaviour of the normalization versions for compartments is
the same.

Moreover we want to take a look at the force of infection, as this was the challenging part in
the normalization. Since we have used two different definitions, we now want to see if they are
similar. We define the error for the force of infection as Folerror = |A(2) — I(t)|. Again we plot the
error for Scenario 2, that can be seen in Figure Here we can see again that the behaviour of
both force of infection terms is very similar and also the error is at least two orders of magnitude
smaller than the actual force of infection terms. Moreover, we take into account that we used
step size At = 1 and expect a rather large approximation error. All in all we conclude that the
normalized model from Section with the force of infection term I is a good choice to
model the endemic dynamic of the birth-and-death model introduced in Section

5.4.4 Analysis of the normalized model

In this section we want to analyse the normalized SECIR-type model from Section [2.2| numeric-
ally. We are interested to see if similar results as from Section where we mainly focused on
the normalized SIRD, also hold for the SECIR-type model.

First, we want to look at the force of infection term, as it is a good way to see the disease
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dynamics in one term. The plots for the force of infection terms, in the three different scenarios
from Table |3 are given in Figure In the plot for Scenario 1, one can see that the disease
dies already out after about 10 time steps. This is also what one would expect as in for scenario
1 the reproduction number is smaller than one and we observed this behaviour also for the
SIRD-model. Then for both Scenarios 2 and 3 the force of infection term is converging to some
fixed value. For the SIRD-model we observed convergence to a positive value if the reproduction
number is smaller than one and the difference of v, and v4 is not too large. Both is the case
for Scenario 2 and 3, therefore the convergence to some fixed positive values is what we would
have expected. Moreover, one can see that the force of infection term is oscillating with waves
getting smaller until it gets constant. We are going to analyse why this happens after we take
a closer look at the behaviour of the compartments.

We start with the compartments for Scenario 1 that are given in As expected, the compart-
ments e, ¢, i, h and u tend to zero quickly, as it is the case for the force of infection term. Also,
one can see that the proportion of individuals that get infected is very small. As the behaviour
of the force of infection term for Scenario 2 and 3 was similar we now only have a look at the
compartments in Scenario 3; see Figure[I5] All compartments converge to some constant value.
Where the largest proportion of individuals are in the compartments s and r and a quite small
proportion of individuals is in an infected compartment. As already for the force of infection
term we can obverse waves in the behaviour of the compartments. The reason for this might
be that the proportion of susceptibles becomes very small at the beginning, therefore only few
individuals can become infected and the force of infection term gets smaller. Then after new
susceptibles are born more individuals can become infected again, this effects repeats itself until
the disease becomes stable.

5.4.5 Analysis of the non-normalized model

In the previous section we have seen the behaviour of the normalized model. In this section we
look at the non-normalized SECIR-type model introduced in Section [2.2] numerically. We have
already seen in Figure[12|that both force of infection terms, A and [ show very similar dynamics.
Therefore, we assume that the results for the force of infection term A are very similar to those
of [ seen in Thus, we will directly focus on the non-normalized compartments. First of all
we have a look at the compartments in Scenario 1. The plots can be found in Figure Before,
we have seen that the disease dies out very fast Scenario 1, here we observe the same. The
amount of individuals in the compartments £, C, I, H and U goes to zero very fast. The amount
of recovered individuals is also decreasing as now new individuals will enter this compartments.
The number of susceptibles is decreasing, as more new individuals are born than die and no new
infections take place. Now we take a look at a case where we have seen endemic behaviour of
the disease. Therefore, we look at the compartments in Scenario 3. The plots can be found in
Figure It can be seen that all compartment sizes are increasing after a certain point. This
happens around the same time when the compartments of the normalized model become stable.
The increase of the compartment sizes comes from the increasing total population size. Before
this, one sees again the wave dynamic of the disease as we already observed before.
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5.4.6 Effect of different birth and death rates

Before we analysed the model always for the same birth-and-death rate, where we had a larger
birth than death rate. In this section we want to see what effect different choices of birth and
death rates might have on the simulation results. We will set the birth and death rate differently
from [2 but the other parameters remain the same. Here we use the non-normalized model given
in Section [£.3]

We start by discussing the effect of varying birth and death rates on the population size. First
of all, we want to make sure that our model behaves as expected in the absence of an infectious
disease. Therefore, we set all parameters and initial values to zero except S, which we initialize
with 10000. The results of this simulation can be seen in Figure As expected, for v, > 1y
the population grows, for v, = v4 we have a constant population, and for v, < v4 the population
size decreases. Now, we go to the case where we actually have an infectious disease. Here we
use again the parameters and initial values given in Section [3.1] In Figure [I9] we modelled the
population size and its derivative for Transition Distributions as in Scenario 2. We remember
that the derivative of the total population is given by N’(t) = Vbﬁ(t) - Vd]v(t) — 5B (t). As seen
before in Figure [13]in this Scenario the force of infection term converges to some constant larger
than zero. Then also the compartments and transitions converge to some constant larger than
zero, explicitly saying lim, . 0%(t,) = 0%* > 0. Then as we assume that 54(t) ~ ]V(t)&g(t),
we expect that lim;_,oo 35 (t) > 0. We see that for v, > 14 the population size explodes. This
means that G5 (t,) is small enough, that N'(t,) > 0 at all time points. In the cases v, = v4 and
vy < 14 the population size decreases. This is also what we would expect as for always positive
35 the derivative N’ (t,,) has to be negative at all time points. This means in these to cases the
population will die out at some time point.

We have seen the influence of the relation between the birth and the death rate. As we have
seen above that for v, < v the population will always die out, we will now focus on the case
vy > vy for different choices of these parameters. In Figure one can find the plots of the
population size and its derivative for Scenario 3. Before we have seen that this means we are
again in a scenario where the model stabilizes around some constant state. Here we used birth
and death rates where the difference between them gets smaller. As one would expect the smaller
the difference gets the slower the population size grows. For the case where v, = 4 - 1072 and
vg = 3.99-1073 the population size is decreasing in the long-term. This means that the number
transition to the disease death compartment is larger than the difference between the birth and
the death rate in this case, as N'(t) < 0.

We now discussed the influence of the choice of the birth and the death rate on the population
size. We also want to talk about the influence of different birth and death rates on the disease
dynamics. We will do this for the normalized SECIR-type model introduced in Section [2.3
First of all, it is clear that the death rate has an influence on the reproduction number, as it
is part of A(t). Moreover, we have seen in the theoretical analysis of the equilibria that the
disease-free equilibrium might be stable for R, > 1, if the difference between the birth and
the death rate is too large, see Remark In Figure one can see the behaviour of the
force of infection term and the susceptibles of the normalized model in Scenario 2, for birth
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and death rates getting smaller. Here, the proportion of the birth and the death rate stays the
same. The reproduction number for v, = 0.4 and vy = 0.3 is 0.611289. Therefore, we expect
convergence to the disease-free equilibrium, what also can be observed in Figure In the
cases 1y =4-1072,v;=3-10"2 and v, =4 - 1073,y = 3- 1073, we see a convergence to some
endemic state as one would expect as we have a reproduction number larger than one in these
cases. In the case v, = 4-107% vy = 3-107%, we see that the disease dies out, although we have
reproduction number R. = 1.75065. There is no direct explanation for this from the theoretical
results. A reason might be that the number of new susceptibles increases too slow and therefore
less new infections take place. In other words, for a too small birth rate we are in a epidemic
scenario.

For the SIRD-model we have seen in Theorem and Figure [10] that if the difference of the
birth and the death rate becomes to large we might converge to the disease-free equilibrium,
although the reproduction number is larger then one. We now want to see if and when this
is the case in the SECIR-type model. In Figure 22] one can find the behaviour of the force of
infection term and the susceptibles for the normalized model in Scenario 2. Again we made the
plot different birth and death rates, in this case we wanted chose them to have a large different.
As expected for v, = 1-107! and vy = 2- 1073 we converge to a disease-free state.

5.4.7 Convergence of the scheme

Up to this point we did not discuss convergence of the non-standard scheme, we just assumed
that it is converging to the continuous model. In [§] they show that the non-standard scheme
is consistent with their theoretical model of order 1. Moreover, in [I5] they show numerically
linear convergence for the compartments using the non-standard scheme. We will not go into the
question of convergence in detail but we want to have a short look at the behaviour of the scheme
as the step size At decreases. We will do the computations for At = 10°,10~%,10—2,1073 and
10~*. The computations are prohibitively time-consuming for smaller step sizes, and the other
computations already give an idea of convergence. In the following, we again use the parameters
given in Table [2| and for the transition distributions we use the scenarios from Table |3, The
exponential distribution is also a possible choice for the transition distributions. Therefore, we
will define a fourth scenario in which we set 722(t) = exps(t), for all suitable 21,2 € Z.

In Table |5 you can find the values Afor the reproduction number ﬁc, in Table |§| the values for
S(1) and in Table [7| the values for A(1). All in all, one can see that the difference between the
values for R, S(1) and (1) gets smaller as the step size gets smaller. But to be absolutely
sure that the discretization scheme converges, one would need to evaluate more time step sizes.
Moreover, we observe that the difference between the values is the largest in Scenario 4, where
we used the exponential distribution. These results give the idea that the numerical scheme
converges to some point. However, the question of convergence needs to be discussed further.
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At

R

C

Scenario 1

Scenario 2

Scenario 3

Scenario 4

109
101
1072
1073
1074

0.49850225
0.74321558
0.75022827
0.75068752
0.75073094

1.73316892
1.60493265
1.58533925
1.58331490
1.58311182

3.42175268
2.55310533
2.47309137
2.46515471
2.46436169

1.84678163
0.60805238
0.52211513
0.51398559
0.51317728

Table 5: Values of the reproduction number of the different scenarios for a decreasing step
size At.

At 5(1)

Scenario 1

Scenario 2

Scenario 3

Scenario 4

100
101
1072
1073
1074

100099.82053838
100080.47529549
100078.31900395
100078.10081657
100078.07897303

100099.82053838
100079.17675936
100077.04831483
100076.83471108
100076.81334308

100099.82053838
100078.63759302
100076.50513239
100076.29195296
100076.27063571

100099.82053838
100088.47616227
100087.04372800
100086.90164288
100086.88744536

Table 6: Number of susceptibles at time ¢ = 1 of the different Scenarios for a decreasing step

size At.

Table 7: Force of Infection at time ¢t = 1 for different scenarios for a decreasing step size At.

At (1)

Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4
10° | 0.00013038 | 0.00017437 | 0.00020062 | 0.00008464
10~ | 0.00015757 | 0.00017819 | 0.00019236 | 0.00007407
1072 | 0.00016109 | 0.00017872 | 0.00019145 | 0.00006847
1073 | 0.00016144 | 0.00017878 | 0.00019135 | 0.00006788
10~ | 0.00016147 | 0.00017878 | 0.00019135 | 0.00006782
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6 Conclusion

Here we summarize the main results of our thesis and discuss some remaining open questions.
In this thesis, we set out to investigate endemic states of a new model for infection dynamics.
Our model is based on the SECIR-type IDE model given in [I5] and incorporates a birth and a
natural death rate. Notably, our model is very general and allows for both population growth
and decline. Investigations of endemic states for IDE-based models, in the literature, see [13],
are mostly limited to models with constant population size, i.e., models without disease induced
death and identical birth and death rates. In these models, the endemic states are precisely the
equilibria of the model, and their stability depends simply on the reproduction number R..

For scenarios with more general population dynamics, IDE-based models are notably absent
from the literature, while many results exist for ODE-based models. Our goal was therefore to
adapt the techniques from the ODE-based models to our IDE case. For such models as ours,
the long-term analysis is very complex and the notion of an equilibrium is ill-suited. Therefore,
we introduced a normalized IDE-based model, which seems to have not yet been investigated in
the literature. While our numerical experiments in Section [5.4.3| strongly suggest the validity of
our normalized model, its rigorous mathematical derivation from the original model is not yet
complete.

We were able to show that the disease-free state is stable if the reproduction number is smaller
than one, Theorem [3.3] and is mostly unstable if the reproduction number is larger than one,
Theorem [3.6] These results were also replicated for the discretized models numerically in Sec-
tion The endemic states of our model are much more involved than in previous IDE-based
models [I3] and ODE-based models [IT},12]. Our analysis showed that the existence of a feasible
endemic equilibrium is tightly linked to multiple parameters, besides the reproduction number,
which did not play a role in previous results. For quite a wide range of parameters, we showed
that no feasible endemic equilibrium exists. However, in the numerical experiments we could
see that in cases where no feasible equilibrium exists according to the theoretical analysis, we
still see convergence of the model to an endemic state. Our analysis gives rise to new research
questions that could be studied in future work. For example, the validity of the normalized
model and the existence and stability of an endemic equilibrium.
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