elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Revisiting the Linear Chain Trick in epidemiological models: Implications of underlying assumptions for numerical solutions

Plötzke, Lena und Wendler, Anna Clara und Schmieding, Rene und Kühn, Martin Joachim (2026) Revisiting the Linear Chain Trick in epidemiological models: Implications of underlying assumptions for numerical solutions. Mathematics and Computers in Simulation, 239, Seiten 823-844. Elsevier. doi: 10.1016/j.matcom.2025.07.045. ISSN 0378-4754.

[img] PDF - Nur DLR-intern zugänglich - Preprintversion (eingereichte Entwurfsversion)
12MB
[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Offizielle URL: https://doi.org/10.1016/j.matcom.2025.07.045

Kurzfassung

In order to simulate the spread of infectious diseases, many epidemiological models use systems of ordinary differential equations (ODEs) to describe the underlying dynamics. These models incorporate the implicit assumption, that the stay time in each disease state follows an exponential distribution. However, a substantial number of epidemiological, data-based studies indicate that this assumption is not plausible. One method to alleviate this limitation is to employ the Linear Chain Trick (LCT) for ODE systems, which realizes the use of Erlang distributed stay times. As indicated by data, this approach allows for more realistic models while maintaining the advantages of using ODEs. In this work, we propose an advanced LCT SECIR-type model incorporating eight infection states with demographic stratification. We review key properties of the corresponding LCT model and demonstrate that predictions derived from a simple ODE-based model can be significantly distorted, potentially leading to wrong political decisions. Our findings demonstrate that the influence of distribution assumptions on the behavior at change points and on the prediction of epidemic peaks is substantial, while the assumption has no effect on the final size of the epidemic. With respect to prior findings in literature, we demonstrate that the influence of the number of subcompartments on the timing and size of the epidemic peak is nontrivial and that a general statement cannot be obtained. We, then, show how these age-resolved LCT SECIR-type models capture the spread of SARS-CoV-2 in Germany in 2020. Eventually, we study the implications on the time-to-solution for different LCT models using fixed and adaptive step-size Runge-Kutta methods and provide computational performance for these models in the MEmilio software framework, also using distributed memory parallelism to speed up ensemble runs.

elib-URL des Eintrags:https://elib.dlr.de/217556/
Dokumentart:Zeitschriftenbeitrag
Titel:Revisiting the Linear Chain Trick in epidemiological models: Implications of underlying assumptions for numerical solutions
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Plötzke, LenaLena.Ploetzke (at) dlr.dehttps://orcid.org/0000-0003-0440-1429194185694
Wendler, Anna Claraanna.wendler (at) dlr.dehttps://orcid.org/0000-0002-1816-8907NICHT SPEZIFIZIERT
Schmieding, ReneRene.Schmieding (at) dlr.dehttps://orcid.org/0000-0002-2769-0270NICHT SPEZIFIZIERT
Kühn, Martin JoachimMartin.Kuehn (at) dlr.dehttps://orcid.org/0000-0002-0906-6984NICHT SPEZIFIZIERT
Datum:Januar 2026
Erschienen in:Mathematics and Computers in Simulation
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:239
DOI:10.1016/j.matcom.2025.07.045
Seitenbereich:Seiten 823-844
Verlag:Elsevier
ISSN:0378-4754
Status:veröffentlicht
Stichwörter:Ordinary differential equations, Exponential distribution, Linear Chain Trick, Gamma Chain Trick, Erlang distribution, Infectious disease modeling, Numerical solution, MEmilio
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Aufgaben SISTEC
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie > High-Performance Computing
Institut für Softwaretechnologie
Hinterlegt von: Plötzke, Lena
Hinterlegt am:14 Okt 2025 10:41
Letzte Änderung:14 Okt 2025 10:41

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.