
Mathematics and Computers in Simulation 239 (2026) 823–844 

A
0
(

 

Contents lists available at ScienceDirect

Mathematics and Computers in Simulation

journal homepage: www.elsevier.com/locate/matcom  

Original articles

Revisiting the Linear Chain Trick in epidemiological models: 
Implications of underlying assumptions for numerical solutions
Lena Plötzke a , Anna Wendler a , René Schmieding a , Martin J. Kühn a,b ,∗

a Institute of Software Technology, Department of High-Performance Computing, German Aerospace Center, Cologne, Germany
b Bonn Center for Mathematical Life Sciences and Life and Medical Sciences Institute, University of Bonn, Bonn, Germany

A R T I C L E  I N F O

Dataset link: https://github.com/SciCompMod
/memilio, https://zenodo.org/records/142375
45, https://github.com/SciCompMod/memilio-
simulations

MSC:
34A34
65L06
65Z05
92D30

Keywords:
Ordinary differential equations
Exponential distribution
Linear Chain Trick
Gamma Chain Trick
Erlang distribution
Infectious disease modeling
Numerical solution
MEmilio framework

 A B S T R A C T

In order to simulate the spread of infectious diseases, many epidemiological models use 
systems of ordinary differential equations (ODEs) to describe the underlying dynamics. These 
models incorporate the implicit assumption, that the stay time in each disease state follows 
an exponential distribution. However, a substantial number of epidemiological, data-based 
studies indicate that this assumption is not plausible. One method to alleviate this limitation 
is to employ the Linear Chain Trick (LCT) for ODE systems, which realizes the use of Erlang 
distributed stay times. As indicated by data, this approach allows for more realistic models 
while maintaining the advantages of using ODEs.

In this work, we propose an advanced LCT SECIR-type model incorporating eight infection 
states with demographic stratification. We review key properties of the corresponding LCT 
model and demonstrate that predictions derived from a simple ODE-based model can be 
significantly distorted, potentially leading to wrong political decisions. Our findings demonstrate 
that the influence of distribution assumptions on the behavior at change points and on the 
prediction of epidemic peaks is substantial, while the assumption has no effect on the final size 
of the epidemic. With respect to prior findings in literature, we demonstrate that the influence 
of the number of subcompartments on the timing and size of the epidemic peak is nontrivial and 
that a general statement cannot be obtained. We, then, show how these age-resolved LCT SECIR-
type models capture the spread of SARS-CoV-2 in Germany in 2020. Eventually, we study the 
implications on the time-to-solution for different LCT models using fixed and adaptive step-size 
Runge–Kutta methods and provide computational performance for these models in the MEmilio 
software framework, also using distributed memory parallelism to speed up ensemble runs.

1. Introduction

Infectious diseases have long been a major challenge to the health and well-being of society. Despite improvements in hygiene 
standards and the development of vaccines and other medical breakthroughs, existing and emerging infectious diseases remain a 
major global health concern [1,2]. A recent example is the COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, which has 
resulted in 14.9 million excess deaths in 2020 and 2021 [3].

Mathematical models are a crucial tool for understanding the dynamics of infectious disease spread and analyzing possible 
nonpharmaceutical interventions (NPIs) [4]. Numerous methodological approaches, using mathematical models, are available for the 
prediction of the spread of infectious diseases. Among these approaches, those based on ordinary differential equations (ODE) are the 
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most prevalent in the scientific literature [5]. Simple ODE-based models can be generalized or extended differently to achieve a more 
realistic representation of the infection dynamics, e.g., to ODE-based metapopulation models [6–11] or integral-based differential 
equations [12–14]. Substantially different approaches rely on the modeling of individuals and are given by agent-based [15–18] or 
even use a hybrid combination of metapopulation and agent-based models [19–21]. While models of artificial intelligence (AI) have 
also been directly applied to disease dynamics data, also AI surrogate models for agent-based or spatially resolved metapopulation 
models have been proposed [22,23].

ODE-based models are known for their simple formulation, well established mathematical analysis and straightforward im-
plementation and numerical solution [5]. In these simple ODE-based models, each disease state corresponds to one ODE. The 
formulation using linear transition rates between two states leads to the implicit assumption of exponentially distributed stay 
times [24,25]. From the epidemiological application, this model assumption is considered unrealistic [24–29]. One solution is to use 
models based on integro-differential equations (IDE), which allow a flexible choice of the distributions of the stay times in the disease 
states, see e.g. [13,14]. This approach has already been presented by Kermack and McKendrick in [30], which is, however, mostly 
cited for its simplified ODE formulation [31]. From our understanding, this is a result of the IDE formulations being mathematically 
more challenging to analyze, formulate, and implement in software.

To bypass the complexity of IDE formulations, a method using linear chains of substates in ODE formulations was developed [32]. 
This concept, called the Linear Chain Trick (LCT), generates Erlang distributed stay times for the initial compartments [5,32]. As 
Erlang distributed stay times are considered to be more realistic than exponentially distributed stay times, an alternative, situated 
between IDE-based and simple ODE-based formulations, is given.

In this work, we propose a model using the LCT with eight disease states including exposed, pre- and asymptomatic, symptomatic, 
severe, and critical states, all stratified by age. It is a versatile model for early epidemic states of, e.g., respiratory diseases. Research 
on LCT models has been conducted by several authors, including  [5,26,28,33,34]. In order to incorporate more realistic distribution 
assumptions, the approach has been applied in different settings. In particular, LCT models were used in recent studies to model 
the dynamics of the COVID-19 pandemic [35–39]. However, most of these models were not age-resolved or considered less disease 
states. Our objective is to revisit the LCT with a generic model to review corresponding, partially contradictory statements made in 
the literature and to also consider implications for the numerical solution process.

This paper is structured as follows. In Section 2, we introduce our detailed age-resolved LCT-based model and provide a 
description of the model parameters. Subsequently, in Section 3, we revise some mathematical properties of the Erlang distribution 
and, more precisely, of our model. Then, in Section 4, we investigate the model behavior in detail by numerical experiments. In 
particular, we examine the influence of the distribution assumption on the behavior at change points and on the size and timing 
of epidemic peaks, as well as on the final size of the epidemic. We then demonstrate the significance of using an age-resolved 
model and apply our model to a scenario based on the spread of COVID-19 in Germany. Furthermore, we conduct a run time and 
performance study for various LCT model realizations before, eventually, providing discussion and conclusion.

2. An age-resolved SECIR-type Linear Chain Trick model

In this section, we present a detailed SECIR-type model with eight compartments realizing Erlang distributed stay times and a 
stratification by age. We extend a version of the ODE model presented in [6] by the Linear Chain Trick concept. The version of the 
ODE model that serves as the foundation for this is also presented in [14, Appendix A] (without age resolution). As our model is 
formulated using the LCT, we denote the model LCT-SECIR model or simply LCT model.

Fig. 1. Structure of the LCT-SECIR model, omitting age groups visualization. Schematic illustration of the possible transitions between compartments and 
subcompartments according to the LCT-SECIR model. For the sake of clarity, we have omitted the indices for age groups. The subcompartments, in which 
individuals are infectious and can infect people from the Susceptible compartment, are highlighted in red. A description of the model parameters can be found 
in Table  1.
824 
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Table 1
Description of the parameters used in the LCT-SECIR model.
 Parameter Description  
 𝑍𝑖,𝑗 (𝑡) Number of people of age group 𝑖 in subcompartment 𝑗 of 

compartment 𝑍
 

 at simulation time 𝑡.  
 𝑛𝑍,𝑖 Number of subcompartments of the compartment 𝑍 of age group 𝑖.  
 𝜙𝑖,𝑘(𝑡) Average number of daily contacts of a person of age group 𝑖  
 with persons from group 𝑘 at simulation time 𝑡.  
 𝜌𝑖(𝑡) Transmission risk on contact of age group 𝑖 at simulation time 𝑡.  
 𝜉𝐶,𝑖(𝑡) Proportion of Carrier individuals of age group 𝑖 not isolated at 

simulation time 𝑡.
 

 𝜉𝐼,𝑖(𝑡) Proportion of Infected individuals of age group 𝑖 not isolated at 
simulation time 𝑡.

 

 𝑁𝑖(𝑡) Total number of living people of age group 𝑖 at simulation time 𝑡.  
 𝑇𝑍,𝑖 Average stay time in days in compartment 𝑍 of individuals of age 

group 𝑖.
 

 𝜇𝑍𝑖
𝑌𝑖

Expected probability of transition from compartment 𝑌  to 𝑍 of age 
group 𝑖.

 

In the model, individuals are classified according to their disease state and assigned to a specific compartment. The compartment
Susceptible (𝑆) is used for individuals who are susceptible to infection with the considered disease and have a default immune 
protection; Exposed (𝐸) for individuals in their latent period that are infected but not yet infectious and Carrier (𝐶) for people that 
are infectious but do not show symptoms, which may be pre- or asymptomatic. We use Infected (𝐼) for people who are infectious and 
mildly symptomatic; Hospitalized (𝐻) for people suffering from severe symptoms; In Intensive Care Unit (𝑈); Recovered (𝑅) for people 
that are immune to any future infection and Dead (𝐷) for people that died from the disease. We define the set of compartments 
as  ∶= {𝑆,𝐸, 𝐶, 𝐼,𝐻,𝑈,𝑅,𝐷}. As infectious disease parameters can be highly dependent on age, see e.g. [6], we further divide 
the population in 𝑚 ∈ N different sociodemographic groups. While one could also stratify the population according to gender or 
education, we, here, use a stratification into age groups. We use the notation 𝑍𝑖(𝑡) for the number of people of age group 𝑖 ∈ {1,… , 𝑚}
with the disease state 𝑍 ∈  at simulation time 𝑡 ∈ R.

To realize Erlang distributed stay times with an ODE model, we divide the compartments 𝑍 ∈  ∶= {𝐸,𝐶, 𝐼,𝐻,𝑈} into 𝑛𝑍 ∈ N
subcompartments. The compartments {𝑆,𝑅,𝐷} are not divided as they serve as initial or absorbing states. According to the LCT, 
replacing a compartment by a chain of subcompartments with linear transition rates leads to an Erlang distributed stay time in 
the compartment itself. A more detailed examination of this topic will be provided in Section 3. We allow different numbers of 
subcompartments for different age groups, which is denoted by 𝑛𝑍,𝑖 ∈ N for 𝑍 ∈  and 𝑖 ∈ {1,… , 𝑚}. For compartment 𝑍 ∈ , 
the number of people of age group 𝑖 ∈ {1,… , 𝑚} in subcompartment 𝑗 ∈ {1,… , 𝑛𝑍,𝑖} at simulation time 𝑡 is denoted by 𝑍𝑖,𝑗 (𝑡). A 
schematic presentation of the model including subcompartments, omitting age group visualization, is depicted in Fig.  1.

Finally, we define the model equations of the LCT-SECIR model for each age group 𝑖 ∈ {1,… , 𝑚} as

𝑆′
𝑖 (𝑡) = −𝑆𝑖(𝑡) 𝜌𝑖(𝑡)

𝑚
∑

𝑘=1

1
𝑁𝑘(𝑡)

𝜙𝑖,𝑘(𝑡)
(

𝜉𝐶,𝑘(𝑡)𝐶𝑘,∗(𝑡) + 𝜉𝐼,𝑘(𝑡) 𝐼𝑘,∗(𝑡)
)

𝐸′
𝑖,1(𝑡) = 𝑆𝑖(𝑡) 𝜌𝑖(𝑡)

𝑚
∑

𝑘=1

1
𝑁𝑘(𝑡)

𝜙𝑖,𝑘(𝑡)
(

𝜉𝐶,𝑘(𝑡)𝐶𝑘,∗(𝑡) + 𝜉𝐼,𝑘(𝑡) 𝐼𝑘,∗(𝑡)
)

−
𝑛𝐸,𝑖

𝑇𝐸,𝑖
𝐸𝑖,1(𝑡)

𝐸′
𝑖,𝑗 (𝑡) =

𝑛𝐸,𝑖

𝑇𝐸,𝑖
𝐸𝑖,𝑗−1(𝑡) −

𝑛𝐸,𝑖

𝑇𝐸,𝑖
𝐸𝑖,𝑗 (𝑡)  for 𝑗 ∈ {2,… , 𝑛𝐸,𝑖}

𝐶 ′
𝑖,1(𝑡) =

𝑛𝐸,𝑖

𝑇𝐸,𝑖
𝐸𝑖,𝑛𝐸,𝑖

(𝑡) −
𝑛𝐶,𝑖

𝑇𝐶,𝑖
𝐶𝑖,1(𝑡)

𝐶 ′
𝑖,𝑗 (𝑡) =

𝑛𝐶,𝑖

𝑇𝐶,𝑖
𝐶𝑖,𝑗−1(𝑡) −

𝑛𝐶,𝑖

𝑇𝐶,𝑖
𝐶𝑖,𝑗 (𝑡)  for 𝑗 ∈ {2,… , 𝑛𝐶,𝑖}

𝐼 ′𝑖,1(𝑡) = 𝜇𝐼𝑖
𝐶𝑖

𝑛𝐶,𝑖
𝑇𝐶,𝑖

𝐶𝑖,𝑛𝐶,𝑖
(𝑡) −

𝑛𝐼,𝑖
𝑇𝐼,𝑖

𝐼𝑖,1(𝑡)

𝐼 ′𝑖,𝑗 (𝑡) =
𝑛𝐼,𝑖
𝑇𝐼,𝑖

𝐼𝑖,𝑗−1(𝑡) −
𝑛𝐼,𝑖
𝑇𝐼,𝑖

𝐼𝑖,𝑗 (𝑡)  for 𝑗 ∈ {2,… , 𝑛𝐼,𝑖} (1)

𝐻 ′
𝑖,1(𝑡) = 𝜇𝐻𝑖

𝐼𝑖

𝑛𝐼,𝑖
𝑇𝐼,𝑖

𝐼𝑖,𝑛𝐼,𝑖 (𝑡) −
𝑛𝐻,𝑖

𝑇𝐻,𝑖
𝐻𝑖,1(𝑡)

𝐻 ′
𝑖,𝑗 (𝑡) =

𝑛𝐻,𝑖

𝑇𝐻,𝑖
𝐻𝑖,𝑗−1(𝑡) −

𝑛𝐻,𝑖

𝑇𝐻,𝑖
𝐻𝑖,𝑗 (𝑡)  for 𝑗 ∈ {2,… , 𝑛𝐻,𝑖}

𝑈 ′
𝑖,1(𝑡) = 𝜇𝑈𝑖

𝐻𝑖

𝑛𝐻,𝑖

𝑇𝐻,𝑖
𝐻𝑖,𝑛𝐻,𝑖

(𝑡) −
𝑛𝑈,𝑖

𝑇𝑈,𝑖
𝑈𝑖,1(𝑡)

𝑈 ′
𝑖,𝑗 (𝑡) =

𝑛𝑈,𝑖 𝑈𝑖,𝑗−1(𝑡) −
𝑛𝑈,𝑖 𝑈𝑖,𝑗 (𝑡)  for 𝑗 ∈ {2,… , 𝑛𝑈,𝑖}
𝑇𝑈,𝑖 𝑇𝑈,𝑖
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𝑅′
𝑖(𝑡) =

(

1 − 𝜇𝐼𝑖
𝐶𝑖

) 𝑛𝐶,𝑖

𝑇𝐶,𝑖
𝐶𝑖,𝑛𝐶,𝑖

(𝑡) +
(

1 − 𝜇𝐻𝑖
𝐼𝑖

) 𝑛𝐼,𝑖
𝑇𝐼,𝑖

𝐼𝑖,𝑛𝐼,𝑖 (𝑡)

+
(

1 − 𝜇𝑈𝑖
𝐻𝑖

) 𝑛𝐻,𝑖

𝑇𝐻,𝑖
𝐻𝑖,𝑛𝐻,𝑖

(𝑡) +
(

1 − 𝜇𝐷𝑖
𝑈𝑖

) 𝑛𝑈,𝑖

𝑇𝑈,𝑖
𝑈𝑖,𝑛𝑈,𝑖

(𝑡)

𝐷′
𝑖(𝑡) = 𝜇𝐷𝑖

𝑈𝑖

𝑛𝑈,𝑖

𝑇𝑈,𝑖
𝑈𝑖,𝑛𝑈,𝑖

(𝑡)

for 𝑡 ≥ 0, where

𝑍𝑖,∗(𝑡) ∶=
𝑛𝑍,𝑖
∑

𝑗=1
𝑍𝑖,𝑗 (𝑡)

is the total number of individuals of age group 𝑖 in compartment 𝑍 ∈ . Hereby, 𝑁𝑖(𝑡) ∶=
∑

𝑍∈⧵𝐷 𝑍𝑖(𝑡) is the total number of 
living people of age group 𝑖 where 𝑁+

𝑖 ∶= 𝑁𝑖(𝑡) + 𝐷𝑖(𝑡) is constant in time. The model excludes birth and disease unrelated death 
events. The parameters 𝜌𝑖(𝑡) ∈ [0, 1] refer to the average transmission risk on a contact of age group 𝑖 at simulation time 𝑡. The entry 
𝜙𝑖,𝑘(𝑡) ≥ 0 in the contact matrix 𝜙(𝑡) is the average number of daily contacts that a person of age group 𝑖 has with people belonging 
to age group 𝑘. Additionally, 𝜉𝐶,𝑖(𝑡) ∈ [0, 1] and 𝜉𝐼,𝑖(𝑡) ∈ [0, 1] represent the average proportion of Carrier and Infected individuals, 
respectively, of age group 𝑖 that are not isolated at simulation time 𝑡. The parameters 𝑇𝑍,𝑖 ≥ 0 depict the average stay time in days in 
compartment 𝑍 ∈  for each age group 𝑖. The last set of remaining parameters to be described is 𝜇𝑍𝑖

𝑌𝑖
∈ [0, 1], which is the expected 

probability for individuals of age group 𝑖 to move from disease state 𝑌 ∈  to a consecutive state 𝑍 ∈ . Note that the parameter is 
only defined if a transition from 𝑌  to 𝑍 is possible according to Fig.  1. An overview of the model parameters can be found in Table 
1.

3. Properties of the LCT model

This section presents a review of the most significant properties of the proposed LCT-SECIR model (1). The objective is to establish 
a foundation for explaining the differences in the simulation results that will be discussed in the following section. The findings are 
not exclusive to our model; they can be applied to general uses of the LCT.

We begin by demonstrating that the model formulation indeed results in Erlang distributed stay times in each compartment. 
The proofs can be done with elementary calculus, stochastics and solution theory for differential equations. For detailed proofs of 
the theorems presented, see, e.g., [40]. In order to provide a comprehensive overview, we recall the defining characteristics of an 
Erlang distribution. 

Remark 3.1.  The probability density function of the Erlang distribution is given by

𝑓𝜆,𝛼(𝑥) =

{ 𝜆𝛼

(𝛼−1)! 𝑥
𝛼−1 𝑒−𝜆 𝑥  for 𝑥 ≥ 0

0  for 𝑥 < 0

with a rate parameter 𝜆 ∈ R+ and an integer shape parameter 𝛼 ∈ N. The cumulative distribution function of the Erlang distribution 
is

𝐹𝜆,𝛼(𝑥) = 1 − 𝑒−𝜆 𝑥
𝛼
∑

𝑗=1

(𝜆 𝑥)𝑗−1

(𝑗 − 1)!
= 1 −

𝛼
∑

𝑗=1

1
𝜆
𝑓𝜆,𝑗 (𝑥)

for 𝑥 ≥ 0.

Remark 3.2.  The Erlang distribution is a special case of the gamma distribution, with the restriction that only integer shape 
parameters are allowed. Therefore, the Linear Chain Trick is also sometimes called Gamma Chain Trick.

As a first step to show that the overall stay time in a compartment is Erlang distributed, we examine the stay time distribution 
in each subcompartment. 

Theorem 3.3.  For each compartment 𝑍 ∈  and age group 𝑖 ∈ {1,… , 𝑚}, let 𝑋𝑍,𝑖,𝑗 be the random variable describing the stay time in 
subcompartment 𝑍𝑖,𝑗 for each 𝑗 ∈ {1,… , 𝑛𝑍,𝑖}.

Then, the random variable 𝑋𝑍,𝑖,𝑗 is exponentially distributed with parameter 
𝑛𝑍,𝑖
𝑇𝑍,𝑖

 for each 𝑗 ∈ {1,… , 𝑛𝑍,𝑖}.

Proof.  For this proof, we omit the age index 𝑖. Let 𝜎𝑍,𝑗 (𝑡) be the number of people entering subcompartment 𝑍𝑗 at time 𝑡. 
Reformulating (1) leads to 

𝑍′
𝑗 (𝑡) = 𝜎𝑍,𝑗 (𝑡) −

𝑛𝑍
𝑇𝑍

𝑍𝑗 (𝑡). (2)

Let the function 𝛾𝑍,𝑗 (𝜏) = P(𝑋𝑍,𝑗 > 𝜏) describe the probability that an individual is still in subcompartment 𝑍𝑗 after 𝜏 days since 
entering. Therefore, 1 − 𝛾𝑍,𝑗 (𝜏) is the cumulative density function (CDF) of the random variable 𝑋𝑍,𝑗 . Applying the definition of 
𝛾𝑍,𝑗 (𝜏), the equality 

𝑍𝑗 (𝑡) =
∞
𝛾𝑍,𝑗 (𝜏) 𝜎𝑍,𝑗 (𝑡 − 𝜏) d𝜏 (3)
∫0

826 



L. Plötzke et al. Mathematics and Computers in Simulation 239 (2026) 823–844 
must hold. Together with the condition 𝛾𝑍,𝑗 (0) = 1 resulting from the CDF property, Eq. (3) is equivalent to (2) if

𝛾 ′𝑍,𝑗 (𝑡) = −
𝑛𝑍
𝑇𝑍

𝛾𝑍,𝑗 (𝑡)

is satisfied. The unique exponential solution to this initial value problem finalizes the proof. □

Additionally, we need the statement that an Erlang distribution can be considered as a sum of exponential distributions, see 
also [5]. 

Theorem 3.4.  Let a set of random variables, 𝑋𝑖, with 𝑖 ∈ {1,… , 𝑛} and 𝑛 ∈ N, be independent and identically distributed according to 
the exponential distribution with parameter 𝜆 ∈ R>0.

Then, the sum of the random variables, 𝑋 =
∑𝑛

𝑖=1 𝑋𝑖, is Erlang distributed with rate 𝜆 and shape 𝑛.

Proof.  The proof can be conducted by induction, using the calculation rules for the density function of the sum of two independent 
random variables. □

Finally, the combination of the two preceding theorems yields the following corollary. The corollary demonstrates that the 
application of the LCT indeed results in Erlang distributed stay times within the compartments. 

Corollary 3.5.  For each compartment 𝑍 ∈  and age group 𝑖 ∈ {1,… , 𝑚}, let

𝑋𝑍,𝑖 =
𝑛𝑍,𝑖
∑

𝑗=1
𝑋𝑍,𝑖,𝑗

be the random variable representing the overall stay time in the compartment.
Then, the random variable 𝑋𝑍,𝑖 is Erlang distributed with rate parameter 

𝑛𝑍,𝑖
𝑇𝑍,𝑖

 and shape parameter 𝑛𝑍,𝑖.

One can also show that a SECIR-type model based on integro-differential equations as the one presented in [14] can be reduced 
to an LCT model if all stay time distributions are chosen Erlang distributed. An idea of the proof can be taken from [33, Appendix]. 
Additionally, it is obvious that the LCT-SECIR model is a generalization of an ODE-SECIR model as of [6]. The choice of only one 
subcompartment, 𝑛𝑍,𝑖 = 1, for all compartments 𝑍 ∈  and each age group 𝑖, leads to an ODE model with exponentially distributed 
stay times. Therefore, the LCT model is a generalization of a corresponding ODE model and a specialization of a corresponding 
IDE model. That means, we can include more general stay time distribution assumptions without the need to use more complicated 
integro-differential equations.

Corollary  3.5 implies that the mean stay time in compartment 𝑍𝑖 for 𝑍 ∈  and age group 𝑖, 

E(𝑋𝑍,𝑖) = 𝑇𝑍,𝑖, (4)

matches the definition of 𝑇𝑍,𝑖. The variance is given by 

Var (𝑋𝑍,𝑖) =
(𝑇𝑍,𝑖)2

𝑛𝑍,𝑖
. (5)

The variance (5) of the Erlang distribution decreases for an increasing number of subcompartments for a fixed parameter 𝑇𝑍,𝑖. 
This can also be observed in Fig.  2, where the probability density and the survival function of Erlang distributions with a fixed mean 
and varying numbers of subcompartments are plotted. For 𝑛𝑍,𝑖 → ∞ the variance tends toward zero and the Erlang distribution 
converges to the Delta distribution. This implies a fixed stay time 𝑇𝑍,𝑖 in the respective compartment 𝑍𝑖.

The model parameters 𝑇𝑍,𝑖 and 𝑛𝑍,𝑖 can be determined in the case of known mean and variance. Note that the constraint of 
the Erlang distribution, where the number of subcompartments must be a natural number, could mean that the observed variance 
can only be approximated, i.e., if the mean stay time 𝑇𝑍,𝑖 is set with exact precision according to (4), then, inserting the observed 
variance might result in a noninteger value for the number of subcompartments. A solution to prevent rounded values is an approach 
by Cassidy et al. [41], in which hypoexponential distributions instead of Erlang distributions are used to preserve the mean and 
variance accurately, also maintaining an ODE model formulation. Another alternative is given by Hurtado and Kirosingh [5], who 
present the Generalized Linear Chain Trick, which allows for phase-type distributions. Any positive-valued stay time distribution can 
be approximated with arbitrary accuracy, while the model is still formulated by an ODE-system.

Remark 3.6.  In some published works, the subcompartments are described as purely mathematical constructs utilized to achieve 
an Erlang distributed stay time in the disease states, see e.g. [42,43]. While the subcompartments do not represent a particular 
biological state, this statement can be questioned, nevertheless.

The subcompartments can be assigned a biological interpretation in the sense that the expected remaining stay time in the 
disease state 𝑍 ∈  depends on the current subcompartment, as the following consideration shows. Let us consider an individual of 
age group 𝑖 in the subcompartment 𝑍𝑖,𝑗 with 𝑗 ∈ {1,… , 𝑛𝑍,𝑖}. For the individual, there are 𝑛𝑍,𝑖 − 𝑗 remaining subcompartments in 
compartment 𝑍𝑖 which are ordered subsequently according to the course of the disease. The expected remaining stay time in 𝑍𝑖,𝑗
is the same as for the subsequent subcompartments. Therefore, by applying the formula for the mean of exponential distributions, 
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Fig. 2. Density and survival function in an LCT model. Representation of the density function 𝑓𝑛∕𝑇 , 𝑛(𝜏) of the Erlang distribution (left) and the associated 
survival function 1 − 𝐹𝑛∕𝑇 , 𝑛(𝜏) (right) for different choices of the parameter 𝑛. The average stay time 𝑇 = 10 is set for all functions. Here, we omit the indices 
for compartments and age groups.

together with the linearity of mean values and the result of Theorem  3.3, we obtain that the expected remaining stay time in 𝑍𝑖 for 
an individual in 𝑍𝑖,𝑗 is

(

𝑛𝑍,𝑖 − 𝑗 + 1
) 𝑇𝑍,𝑖

𝑛𝑍,𝑖
.

The remaining stay time is different for different subcompartments, as the result depends on 𝑗.
There is substantial evidence that, for most infectious diseases, the Erlang distribution is more realistic than the exponential 

distribution for the stay times in disease states, cf. [24–26,29]. Real distributions tend to have a lower variance than the exponential 
distribution, making other distributions such as Erlang distributions more suitable [25]. The memoryless property of the exponential 
distribution could be a key factor in explaining why the assumption of an exponentially distributed stay time is considered as 
unrealistic. That means, that the expected remaining stay time in a compartment is independent of the time already spent. For 
the Erlang distribution, this expected remaining time decreases the longer the time already spent, which is more realistic for most 
infectious diseases. For more details on the last paragraph, see also [27].

4. Numerical simulations

In this section, we conduct numerical experiments to evaluate the impact of a more realistic distribution assumption and the 
use of age groups on the simulation results. Furthermore, we present a scenario inspired by the spread of COVID-19 in Germany 
to illustrate the utility of this approach for realistic simulations. Note that across the different sections, the simulation time differs 
to set different foci, i.e., short- or long-term. In Sections 4.2.1 and 4.4 and in the first part of Section 4.3, short-term developments 
are considered as, in general, interventions are implemented to prevent epidemic peaking right from the start. In Section 4.2.2 and 
the second part of Section 4.3, we consider the more theoretical outcomes of epidemic peaks and final sizes in long-term scenarios 
in the what-if no intervention scenario.

The proposed age-resolved LCT-SECIR model, along with the related numerical scenarios, are incorporated open-source into our 
high-performance, modular epidemics simulation software MEmilio [44]. Our model, as well as MEmilio, is written in efficient C++ 
to allow for fast and scalable execution. Together with already existing software infrastructure of MEmilio, we can use distributed 
memory parallelism through the MPI standard to execute ensemble runs in parallel, which is also demonstrated in Section 4.5.

4.1. Parameter selection and data

For the numerical simulations, we use parameters and data on the spread of the SARS-CoV-2 virus in Germany in 2020. For 
SARS-CoV-2, the Robert Koch Institute (RKI) publishes daily, age-resolved data on the total number of confirmed cases and deaths 
in Germany [46]. Furthermore, we incorporate data on COVID-19 patients in intensive care unit that is reported by [47]. Our model 
utilizes six age groups as defined by the RKI data. The population sizes 𝑁+

𝑖  are set according to [45].
We adopt age-resolved transition probabilities, mean stay times and the transmission probabilities from [6, Table 2] for an 

ODE-based model. Note that in [6], the mean stay time could be dependent not only on the starting compartment but also on the 
destination compartment. However, the parameters 𝜇𝑍𝑖

𝑌𝑖
 then lose their interpretation as probabilities, which is a consequence of 

the memoryless property. To preserve the original interpretation, we calculate our required mean stay times by weighting the given 
mean stay times with the given probabilities. The values obtained for the epidemiological parameters are presented in Table  2. In 
scenarios where we require parameters that are not stratified by age, the age-resolved parameters are weighted in accordance with 
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Table 2
Age-resolved parameters for wild-type SARS-CoV-2. Epidemiological parameters used to simulate the spread of SARS-CoV-2 
in Germany in the year 2020. The parameters are either directly set or calculated based on [6, Table 2]. For the average values, 
the age specific values are weighted in accordance with the relative share of the age group in the total population according to 
[45]. 
 Parameter 0–4 5–14 15–34 35–59 60–79 80+ Weighted 

average
 

 𝜌𝑖(𝑡) 0.03 0.06 0.06 0.06 0.09 0.175 0.07333  
 𝜇𝐼𝑖

𝐶𝑖
0.75 0.75 0.8 0.8 0.8 0.8 0.79310  

 𝜇𝐻𝑖
𝐼𝑖

0.0075 0.0075 0.019 0.0615 0.165 0.225 0.07864  
 𝜇𝑈𝑖

𝐻𝑖
0.075 0.075 0.075 0.15 0.3 0.4 0.17318  

 𝜇𝐷𝑖
𝑈𝑖

0.05 0.05 0.14 0.14 0.4 0.6 0.21718  
 𝑇𝐸,𝑖 3.335 3.335 3.335 3.335 3.335 3.335 3.335  
 𝑇𝐶,𝑖 2.74 2.74 2.565 2.565 2.565 2.565 2.58916  
 𝑇𝐼,𝑖 7.02625 7.02625 7.0665 6.9385 6.835 6.775 6.94547  
 𝑇𝐻,𝑖 5 5 5.925 7.55 8.5 11 7.28196  
 𝑇𝑈,𝑖 6.95 6.95 6.86 17.36 17.1 11.6 13.066  

the relative share of the age group in the total population. The results are also shown in Table  2. We set 𝜉𝐶,𝑖(𝑡) = 1 and 𝜉𝐼,𝑖(𝑡) = 0.3
for all age groups 𝑖 ∈ {1,… , 𝑚}. This implies that individuals who are not symptomatic do not isolate themselves, whereas those 
who are symptomatic do so more often.

For the LCT model, we assess different assumptions regarding the number of subcompartments. We use the notation LCTX for 
an LCT model with 𝑋 = 𝑛𝑍,𝑖 subcompartments for all compartments 𝑍 ∈  and age groups 𝑖 ∈ {1,… , 𝑚}. Furthermore, we consider 
an LCT model applying an idea used in [48], i.e., for every compartment 𝑍 ∈ , the number of subcompartments is chosen such 
that 𝑛𝑍,𝑖 ≈ 𝑇𝑍,𝑖. For every value, the mean stay time in Table  2 is rounded to the nearest integer value. We denote this LCT 
model by LCTvar as the subcompartment numbers are variable according to the mean stay times. The ideal way to set the number 
of subcompartments would be to use the corresponding variances to the mean stay times from Table  2 and set the numbers of 
subcompartments accordingly by applying Eq. (5). Unfortunately, the appropriate variances are not available for all mean stay 
times, which is why we proceed as described. Although all models are based on ODE systems, we use the simplified notation ODE
to refer to a simple ODE-based model without Linear Chain Trick. Note that notation LCT1 corresponds to ODE.

The contact matrix 𝜙(𝑡) as well as the initial values are provided for each numerical experiment individually. Except for 
Section 4.5, the ODE systems describing the models are solved using a Runge–Kutta scheme of fifth order with a fixed time step of 
𝛥𝑡 = 10−2.

4.2. Impact of the distribution assumption on model behavior

In order to compare the qualitative behavior of LCT models against simple ODE models, we examine the dynamics at change 
points and analyze epidemic peaks and final sizes. To investigate only the effect of the distribution assumptions, the population is 
not divided into age groups for these experiments. We therefore omit the age index in the notation of the parameters.

4.2.1. Behavior at change points
To gain insight into the behavior of simulation results obtained with the simple ODE model in comparison to LCT models, we 

analyze their reaction to change points. A change point may be induced through the adoption or lifting of a NPI.
We set the contact rate and the initial values such that we obtain roughly constant infection dynamics at the start of the 

simulation; see the first two days in Figs.  3, 4 and 6. In particular, the contact rate is set to a level that results in a reproduction 
number of approximately one. Using the next generation matrix, we compute the effective reproduction number for the ODE
model, 

eff(𝑡) = 𝜌(𝑡)𝜙(𝑡)
(

𝜉𝐶 (𝑡) 𝑇𝐶 + 𝜇𝐼
𝐶 𝜉𝐼 (𝑡) 𝑇𝐼

) 𝑆(𝑡)
𝑁(𝑡)

, (6)

to adapt the contact 𝜙(0) such that eff(0) ≈ 1. Under the assumption 𝑆(0) ≈ 𝑁(0) and with the parameters defined in Section 4.1, 
we get a contact rate of approximately 3.22 (which is then also used for the LCT models). The initial compartment sizes are derived 
using the assumption of an approximately constant number of daily new transmissions and the parameters in Table  2. Based on the 
official reporting numbers [49], we use a value of 4050 daily new transmissions as a starting point. The resulting initial compartment 
sizes are distributed uniformly to the subcompartments.

To simulate a change point, we either double or halve the initial contact rate after two simulation days. The simulation results 
for the daily new transmissions using different models for both adaptions of the contact rates are visualized in Fig.  3. The results 
for the number of individuals in the infectious compartments, Carrier and Infected, are shown in Fig.  4.

Due to the changed contact rate, we first and correctly observe that the predicted number of daily new transmissions in Fig.  3 
is halved or doubled, respectively, immediately at the change point. We furthermore see that the new transmissions for the case of 
the ODE model directly continue to increase or decrease. For LCT models with multiple subcompartments, a nontrivial lag time is 
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Fig. 3. Daily new transmissions around change points. Comparison of the daily new transmissions, i.e., the number of people transiting from compartment 
𝑆 to 𝐸 within one simulation day, of different LCT models against a simple ODE model at change points. The contact rate 𝜙(𝑡) is halved (left) or doubled (right) 
after the second simulation day. The naming of the LCT models refer to different assumptions regarding the number of subcompartments, e.g., LCT3 refers to 
an LCT model with 𝑛𝑍 = 3 subcompartments for each compartment 𝑍 ∈  and ODE corresponds to LCT1. LCTvar refers to an LCT model with 𝑛𝑍 ≈ 𝑇𝑍 for each 
compartment 𝑍 ∈ .

Fig. 4. Number of individuals in Carrier and Infected state around different change points. Comparison of the number of individuals in the Carrier (left) 
and Infected (right) compartment of different LCT models against an ODE model for the case of a halved (top) or doubled (bottom) contact rate 𝜙(𝑡) after two 
simulation days. Further notation as in Fig.  3.

observed before a subsequent change in the transmissions. This lag time is also evident in the compartment sizes depicted in Fig. 
4. It can be observed that the length of the lag time increases in accordance with the number of subcompartments used for the 
simulations. Furthermore, the slopes of the curves after the lag time vary according to the number of subcompartments.

The discrepancy in the lag time is a result of the different variances of the stay time distribution in the respective disease states, 
see Fig.  2 and Eq. (5). The exponential distributions used in the ODE model have the highest variance. A fraction of people leave 
immediately after entering a compartment, resulting in very short stays, cf. Fig.  2. Therefore, the number of Carriers predicted by 
the ODE model increases immediately after the contact change, see Fig.  4. The higher the number of subcompartments, the lower 
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Fig. 5. Distribution of individuals in the subcompartments for an increased contact rate. The figures depict the number of individuals in the 𝑛 = 10
(top) or 𝑛 = 50 (bottom) subcompartments of the Exposed compartment (left), the Carrier compartment (center), and the Infected compartment (right) for each 
simulation day in the event of a doubled contact rate 𝜙(𝑡) after two days. The data for day 0 are omitted, as no change can be observed in comparison to day 1.

the variance (5) and the fewer people go to the next state much before or much after the mean stay time. Consequently, the greater 
the choice for 𝑛, the longer the delay.

According to Dey et al. [50], a relaxation or implementation of a NPI leads to a change after 10 to 14 days in data on COVID-
19 in the United States. Guglielmi et al. [51] also find a significant delay for data from Italy and Switzerland. Knowledge of lag 
times demonstrates the need for policymakers to proactively plan for NPIs. Therefore, it is essential that the delay is represented in 
simulation results without further adjustments.

Particularly in the case of a doubling of the contact rate, a wave pattern is noticeable in Fig.  3 and for the Carrier compartment 
in Fig.  4 for high numbers of subcompartments, such as 𝑛 = 50. This phenomenon is once more the result of a small variance in 
combination with the parameter choice for the stay times. To gain a deeper understanding of the wave pattern, Fig.  5 illustrates 
the distributions within the subcompartments for LCT models with either 𝑛 = 10 or 𝑛 = 50 subcompartments and a doubled contact 
rate.

As can be observed in Fig.  4, for 𝑛 = 50 the number of Carrier individuals begins to increase after a period of slightly less than 
2 + 𝑇𝐸 = 5.335 days. At this point, the first individuals move from 𝐸 to 𝐶 that have been infected after the second simulation day, 
where the contact rate is increased. This is due to the fact that they reach the last subcompartment, as illustrated in Fig.  5. This 
first rise is induced by the increased contact rate. In the model with 10 subcompartments, the higher variance of the stay time 
distribution in 𝐸 leads to individuals that traverse faster through the chain of subcompartments. Therefore, the first individuals 
reach compartment 𝐶 earlier than in the case of 50 subcompartments.

Once again, with 50 subcompartments, after approximately 𝑇𝐶 ≈ 2.59 more days, a decreasing slope in compartment 𝐶 becomes 
apparent. As observable in Fig.  5, at this time, the first individuals infected after simulation day two leave compartment 𝐶 and move 
to either 𝐼 or 𝑅. The subsequent larger slope can be attributed to the increased number of transmissions resulting from the higher 
number of Carriers observed after approximately 2 + 𝑇𝐸 days. The individuals that have been infected during this period begin to 
transition to the Carrier compartment. Thus, this second rise of the slope is due to the increased number of infectious individuals. 
The transition from 𝐶 to 𝐼 is evident in the plot in Fig.  5 and for the compartment Infected, we also get a wave pattern. A longer 
simulation period reveals that the wave pattern becomes rapidly unrecognizable as the ratio of inflow and outflow in the infectious 
compartments becomes balanced. For 10 subcompartments, where the variance is higher, the time when the increased number of 
individuals in 𝐶 is driven by the higher contact rate overlaps with the first newly infected individuals leaving 𝐶 and the time when 
more infectious individuals drive the increase. The increased numbers are more evenly distributed across the subcompartments. 
Accordingly, we do not observe a significant wave pattern here.
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Fig. 6. Simulation results for a reduced latent period. Daily new transmission (left) and the distribution of individuals in the Carrier compartment in 𝑛 = 50
subcompartments for the case of a doubled contact rate 𝜙(𝑡) after two simulation days and for a reduced stay time in the Exposed compartment 𝐓𝐄, i.e., a 
reduced latent period. More precisely, we multiply the value defined in Table  2 with a factor of 𝟎.𝟓. Further notation as in Fig.  3.

Fig. 7. Relative difference in daily new transmissions around change points. Relative comparison of the daily new transmissions of different LCT models 
compared to a simple ODE model around change points. The contact rate 𝜙(𝑡) is halved (left) or doubled (right) after the second simulation day. Further notation 
as in Fig.  3.

The wave pattern and the explanation for the waves are highly specific to the particular parameter selection and the relationship 
between the average stay times. Fig.  6 depicts the simulation results for a reduced stay time in the Exposed compartment 𝑇𝐸 , i.e., a 
halved latent period compared to Table  2, for the case where the contact rate was doubled after two simulation days. For this 
adapted parameter choice, the stay time in the Exposed compartment is shorter than in the Carrier compartment, i.e., 𝑇𝐸 < 𝑇𝐶 . As 
shown by the daily new transmissions, the shape of the curves differ for each model compared to the original parameter selection, 
and the wave pattern is less pronounced.

In Figs.  3 and 4, we have presented the short-term outcomes up to 10 days after the change point. However, due to the discussed 
wave pattern and the different slopes, it is yet unclear to which extent the different model assumptions influence the daily new 
transmissions on a short- to mid-term horizon. Thus, we provide the relative difference between the daily new transmissions in the 
LCT models, compared to the ODE model, in Fig.  7 for the same scenario but over a period of up to 40 simulation days. Here, we 
see that the number of new transmissions differs up to −70 % (halved contact rate) and 40 % (doubled contact rate), respectively.

4.2.2. Epidemic peaks and final size
One objective of NPIs is to reduce the maximum number of infections in order to prevent the healthcare system from being 

overloaded and to keep disease dynamics on a manageable level. Based on the model selection, different simulations can lead to 
different predicted peaks and, thus, different assessments of the same NPIs. We therefore examine the impact of the distribution 
assumption on the predicted epidemic peaks to assess the level of error when choosing a too simple model.
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Fig. 8. Daily new transmissions to compare the predicted epidemic peaks. Illustration of the predicted peaks of the daily new transmissions of LCT models 
with different numbers of subcompartments against a simple ODE model. The contact rate is set such that eff(0) ≈ 2 (left) or eff(0) ≈ 4 (right). Further notation 
as in Fig.  3.

Fig. 9. Comparison of the maximum daily new transmissions and the day of the peak for different reproduction numbers and subcompartments.
Comparison of the predicted maximum number of daily new transmissions and the day, where the maximum number/peak is reached for different assumptions 
regarding the effective reproduction number eff(0) and with different choices for the number of subcompartments.

The models are initialized with 500 exposed individuals and the remaining population in the Susceptible compartment. The 
exposed individuals are distributed uniformly to the subcompartments. We perform simulations with different values for the contacts 
𝜙(0) and consequently for the effective reproduction number eff(0). The contact rate remains constant throughout the duration of 
the simulation.

The results regarding the daily new transmissions for eff(0) ≈ 2 and eff(0) ≈ 4 are depicted in Fig.  8. For both 
reproduction numbers, a comparison of the LCT models shows that the maximum value of the curve increases with the number 
of subcompartments selected. The predicted peaks by the ODE model are notably lower than those predicted by the LCT model 
with three subcompartments. The relation of the times at which the models predict the maximum of the epidemic differs for the 
two effective reproduction numbers. In the case of eff(0) ≈ 2, we observe that the epidemic peak is reached earlier the higher 
the number of subcompartments is chosen. Conversely, for eff(0) ≈ 4, the peak is reached the later, the higher the number of 
subcompartments.

To compare the behavior for even more choices of eff(0), Fig.  9 presents the predicted maximum value of the daily new trans-
missions and the time, where the epidemic peak is reached, for different reproduction numbers and numbers of subcompartments. 
Firstly, looking at one model with a fixed number of subcompartments, we observe that the higher the effective reproduction 
number is set, the greater the maximum attained value and the earlier that value is reached. Comparing different numbers of 
subcompartments, we find that for reproduction numbers greater or equal to 7, there is a tendency to lower maxima for increasing 
numbers of subcompartments. For reproduction numbers below 7 there is a tendency to higher maxima for increasing numbers of 
subcompartments. In particular, for reproduction numbers greater or equal to 7, the ODE model predicts a higher epidemic peak 
than the considered LCT models and a lower peak epidemic peak otherwise. For reproduction numbers less than or equal to 3, there 
is a tendency to reach the peak earlier, while for reproduction numbers greater than 3, there is a tendency to reach the peak later 
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Fig. 10. Comparison of the maximum daily new transmissions and the day of the peak for different reproduction numbers and subcompartments for 
a reduced latent period. Comparison of the predicted maximum number of daily new transmissions and the day, where the maximum number/peak is reached 
for different assumptions regarding the effective reproduction number eff(0) and with different choices for the number of subcompartments. Here we consider 
a reduced stay time in the Exposed compartment 𝐓𝐄, i.e., a reduced latent period. More precisely, we multiply the value used in Fig.  9 with a factor of 𝟎.𝟓.

Fig. 11. Comparison of the maximum daily new transmissions and the day of the peak for different reproduction numbers and subcompartments 
for an extended latent period. Comparison of the predicted maximum number of daily new transmissions and the day, where the maximum number/peak is 
reached for different assumptions regarding the effective reproduction number eff(0) and with different choices for the number of subcompartments. Here we 
consider an extended stay time in the Exposed compartment 𝐓𝐄. More precisely, we multiply the value used in Fig.  9 with a factor of 𝟐.

as the number of subcompartments increases. In addition, for a fixed reproduction number, the absolute value of the slope in both 
plots decreases with an increase in the number of subcompartments. Accordingly, the difference in peak size and timing between 
two consecutive numbers of subcompartments is negligible if the numbers are large. If the number of subcompartments is relatively 
low, the discrepancy in peak size and timing between each consecutive number of subcompartments is more pronounced. However, 
an essential finding is that we cannot make a generally valid statement for all reproduction numbers about the relationship between 
the time and the size of the peak for different subcompartments.

In addition to the dependence on the reproduction number, the relation of the size and timing of epidemic peaks for different 
subcompartment numbers is dependent on the selected model parameters. In Fig.  10 and in Fig.  11, we provide analyses with a 
halved and a doubled stay time 𝑇𝐸 , respectively, compared to Table  2. We notice that the thresholds at which the ODE model 
predicts a higher or earlier epidemic peak are shifting.

For the case of a halved stay time in the Exposed compartment in Fig.  10, the ODE model has the lowest epidemic peak 
for all reproduction numbers. We find that the epidemic peak is reached later as the number of subcompartments increases for 
reproduction numbers bigger than 7. For the original case, this threshold was a reproduction number of 3. In Fig.  11 with a doubled 
latent period, the epidemic peak is reached later for higher subcompartment numbers and reproduction numbers larger than 2. 
Moreover, for reproduction numbers greater or equal to 5, the ODE model predicts a higher epidemic peak than LCT models with 
more subcompartments. Although omitted in the plots, we observed that for even longer latent periods, the ODE model predicts 
higher peaks for all reproduction numbers. Therefore, we find that the relation of the size and timing of the epidemic peaks for 
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Fig. 12. Compartment sizes to compare predicted epidemic peaks. Presentation of the simulation results for the number of individuals in the eight 
compartments of the ODE model in comparison with LCT models with different numbers of subcompartments and eff(0) ≈ 2. Notation as in Fig.  3.

different numbers of subcompartments is dependent of the parameter choices for, e.g., the relation between latent and infectious 
period and, in particular, on the reproduction number.

Let us consider our findings in the context of some existing studies dealing with epidemic peaks. Wearing et al. [26] demonstrate 
that an ODE-SIR model predicts a slower initial increase in the number of Infectives than a corresponding LCT model with 100
subcompartments. Additionally, the authors illustrate that the maximum number of infected individuals is significantly lower for 
the ODE model. In their study, Wearing et al. selected a reproduction number of five. Blythe et al. [52] analyze a model for HIV with 
birth and death rates and different distributions for the infectious and the incubation period. The authors observed that the peak 
occurred later and was higher for distribution assumptions with lower variances. Lastly, Blyuss et al. [37] examine a model for the 
spread of COVID-19 that incorporates subcompartments for the Exposed and the infectious compartments. The authors observe that 
the epidemic peak is reached earlier when the number of subcompartments in the Exposed compartment is increased. Furthermore, 
the maximum value of infectious individuals is determined by the number of subcompartments for 𝐼 and is observed to increase with 
an increase in the number of subcompartments. Accordingly, Blyuss et al. [37] observe that the epidemic peak is reached earlier 
with higher numbers of subcompartments, whereas Blythe et al. [52] observe a later peak. All studies conclude that the assumption 
of higher numbers of subcompartments results in a larger predicted epidemic peak. The results of our simulations indicate that the 
timing and size of the epidemic peak are significantly influenced by the effective reproduction number and the specific parameter 
values assumed. In light of these considerations, neither of the studies can be regarded as making universally valid statements.

Remark 4.1.  Diekmann et al. provide in their work [53] a different solution to circumvent the complexity associated with IDE 
models. They formulate and analyze a discrete-time version of IDE models for epidemic outbreaks. One central finding is that 
simple ODE models predict smaller peak sizes than models with a fixed length of the latent and the infectious period. As observed 
in Section 3, for 𝑛 → ∞, the LCT model also converges to fixed stay times. The authors fix the reproduction number at 2.5 and 
additionally use the same initial growth rate for both models under comparison. This may lead to differing model parameters, 
e.g., regarding the stay time in the infectious compartment, see [53, Appendix]. Future research could also consider which results 
are obtained with a fixed initial growth rate combined with different values of the reproduction number.

Fig.  12 depicts the predicted number of individuals in each compartment for eff(0) ≈ 2. The figure shows the significance of 
the assumption regarding the number of subcompartments for the prediction of the maximum capacity needed in hospitals or the 
maximum number of intensive care beds required. For eff(0) ≈ 2, we observe that models with more subcompartments predict 
higher peak values. Consequently, when using the ODE model to predict the required hospital and intensive care bed capacity, 
the estimated number of beds will be lower than the predictions from the LCT models. Given that the Erlang distributed stay time 
assumption employed in the LCT models is regarded as more realistic, the true required bed capacity may in fact be closer to the 
peak predicted by one of these models. Therefore, relying on the exponential stay time assumption in the ODE model may result in 
an underestimation of the necessary capacity, leading to an increased risk of the healthcare system being overwhelmed. A similar 
result is also obtained in [54]. However, our findings regarding the predicted peaks for the daily new transmission suggest that this 
may not always be the case and that we may obtain an opposite behavior for a different parameterization.

For the Susceptible and Recovered compartments, it can be observed that the curves reach a comparable level for all 
subcompartment selections at the end of the simulation, although the curves differ in their shape. This leads us to a comparison of 
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Table 3
Predicted final sizes of different LCT models and relative differences to the ODE result. Comparison of the predicted final 
size 𝑁(0) − 𝑆∞ for different effective reproduction numbers eff(0) and numbers of subcompartments. The final size is rounded 
to the nearest integer in each case. Additionally, the relative differences of the LCT models to the result obtained with the ODE 
models are shown for each reproduction number. For all cases, the final size is calculated using the number of Susceptibles at 
𝑡 = 500, as the compartment size changes not significantly anymore.
 ODE LCT3 LCT10 LCT50 LCTvar  
 eff(0) ≈ 2 final size 66277719 66271490 66268730 66267697 66269604  
 rel. diff. – −0.0094% −0.0136% −0.0151% −0.0122%  
 eff(0) ≈ 4 final size 81507936 81506779 81506459 81506385 81506510  
 rel. diff. – −0.0014% −0.0018% −0.0019% −0.0018%  
 eff(0) ≈ 10 final size 83151260 83151255 83151254 83151254 83151254  
 rel. diff. – −0.000006% −0.000007% −0.000007% −0.000007% 

the final size, which is the total number of individuals who become infected over the course of the epidemic
𝑁(0) − 𝑆∞,  with 𝑆∞ = lim

𝑡→∞
𝑆(𝑡);

cf. [55]. Table  3 shows absolute values for the final size for the effective reproduction numbers 2, 4 and 10 for various assumptions 
regarding the number of subcompartments. To compare the predicted final size of the epidemic from different models, the relative 
deviations of the LCT models to the result of the ODE model are given for each reproduction number. We see that, indeed, the 
relative differences between the ODE model and the LCT models are close to zero for all subcompartment choices.

In [43], it is stated that the final size is independent of the number of subcompartments used for a SEIR model in the latent and 
infectious state. Additionally, the author of [56] identifies a final size relation for an IDE-based model that remains independent of 
assumptions regarding the stay time distribution and depend only on the reproduction number and initial conditions. Our numerical 
experiments align with these findings, demonstrating that the final size in our model is dependent only on the reproduction number 
and is unaffected by the number of subcompartments chosen.

4.3. Impact of age resolution

In the previous sections, we have excluded age groups and demographic resolution to separate the effect of the distribution 
assumption in ODE and different LCT models from the effect of demographic resolution. In this section, we consider an age-
resolved modeling approach, showcasing fundamental differences in the outcomes compared to a non-age-resolved approach. For 
this purpose, we compare a model not stratified by age (using only one age group for the total population) with a model that is 
resolved according to the age groups used in the RKI data. The findings of the previous sections will then be driven by the age 
groups that contribute most to a particular situation of epidemic dynamics.

Fig. 13. Age-resolved contact matrix for Germany. For each RKI age group represented in the rows, the average number of daily contacts with the respective 
age group is provided in the columns. The contact data are based on [57] combined with [58].

The (baseline) contact pattern for Germany shown in Fig.  13 is based on [57] combined with [58] for school contacts. For more 
details, also see [6]. The subpopulation-weighted average of the total number of contacts is 7.69129. We use the LCT10 model to 
demonstrate the impact of the age resolution. In all simulations, the number of individuals in the Exposed compartment is set to 
100 and their number is distributed uniformly across the subcompartments. The remainder of the German population is assigned to 
the Susceptible compartment. We consider two distinct age-resolved simulations and one simulation without age resolution:

I. A15–34 scenario: In the first simulation, we assume that all initial infections circulate within the age group A15–34. 
Accordingly, 100 Exposed individuals are assigned to the age group of 15–34 years.
836 



L. Plötzke et al. Mathematics and Computers in Simulation 239 (2026) 823–844 
Fig. 14. Comparison of different scenarios with and without age resolution. Comparison of a non-age-resolved model with the results of an age-resolved 
model, where the 100 initially Exposed individuals are assumed to be in different age groups. We use 𝑛 = 10 subcompartments for each compartment 𝑍 ∈ . 
Age-resolved simulation results are aggregated for visualization purposes.

Fig. 15. Comparison of different scenarios with and without age resolution to compare epidemic peaks. Comparison of a non-age-resolved model with 
the results of an age-resolved model for 200 simulation days to compare epidemic peaks. The 100 initially Exposed individuals are assumed to be in different 
age groups. We use 𝑛 = 10 subcompartments for each compartment 𝑍 ∈ . Age-resolved simulation results are aggregated for visualization purposes.

II. A80+ scenario: In the second simulation, we assume that all initial infections circulate within the age group of the oldest 
people. Accordingly, 100 Exposed individuals are assigned to the age group of 80+ years.

III. Non-age-resolved scenario: For comparison, the simulations are run without age groups.

Here, the idea is that if either scenario I or II occurs in reality, both are translated into case III if we use a model without age 
resolution. We show that it can be significant for the qualitative and quantitative simulation results to capture differences in the 
age groups in the model when confronted with contact patterns similar to Germany. Note that substantial differences are expected 
if age groups mix more homogeneously and if the off-diagonal entries of the contact matrix are more pronounced or if diagonal 
entries differ less among each other.

The results for 40 simulation days are depicted in Fig.  14. The predictions with the relative small time frame prepare the 
ground for intervention and mitigation actions. To compare the simulations with and without age resolution, we cumulate the 
age-resolved results in the compartments. Although we initially had the same number of individuals in the Exposed compartment in 
each experiment, the results differ significantly. The elderly population has a markedly low number of daily contacts, as can be seen 
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in Fig.  13, which is why the number of additional infections in scenario II remains low over the simulated time period. The contact 
rate for the age group 15–34 years is above average. Although the majority of their contacts occur with individuals belonging to age 
groups with below-average transmission probabilities 𝜌𝑖, cf. Fig.  13 and Table  2, the observed spread for scenario I is faster than that 
predicted in the scenario without age groups. The likelihood of being hospitalized or dying from the disease is significantly higher 
for older people, see also Table  2. Accordingly, we get nontrivial numbers of deaths and hospitalizations for scenario II, despite the 
relatively low infection dynamics.

Fig.  15 provides the results of simulations over a longer period of 200 days. The figure shows that the size and the timing of 
epidemic peaks are affected by the use of age groups. The peaks of scenario II are reached later and the peak sizes and the final 
size vary for the non-age-resolved scenario III compared to the age-resolved scenarios. The peak sizes of both age-resolved scenarios 
are broadly similar; the peak size of the daily new transmissions of scenario I is approximately 2437090 compared to 2437071 for 
scenario II. However, as noted before, these peaks can be considered counterfactual and unrealistic to be reached since suitable 
interventions are most likely to be implemented on time. Overall, from this section, we conclude that the integration of age groups 
and demographic information result in a notable enhancement of the model’s realism, allowing for more appropriate intervention 
schemes.

4.4. Simulation of COVID-19 in Germany

In this section, we examine the applicability of age-resolved LCT models in a realistic context in comparison with an age-resolved 
ODE model. We demonstrate how reported data can be used to initialize the models and apply the reported data to compare 
our simulation results to them. For this, we consider the spread of COVID-19 in Germany in October 2020. We again use the 
epidemiological model parameters defined in Section 4.1 and apply the contact matrix for Germany described in Section 4.3 or Fig. 
13.

We define initial values for our models based on the aforementioned daily reported and age-resolved data by the RKI in 
Germany [46]. In order to set the initial population of the LCT models, we extend an initialization scheme for an ODE model 
proposed in [11, Appendix S1 Text] using the LCT (but neglecting different protection levels for susceptible individuals). In the 
following description, we fix one age group and omit the corresponding age index. However, the scheme is applied to each age 
group in the implementation using the age-resolved data.

The RKI provides daily data [46] regarding the cumulative confirmed cases, which we denote by 𝛴𝐼,RKI(𝑡). For simplicity, we 
assume that the reported cases reflect the number of mildly symptomatic individuals. We scale the number of cumulative confirmed 
cases by a factor 1∕𝑑 to consider a detection ratio 𝑑 ∈ (0, 1]. Hence, the terms 𝛴𝐼,RKI(𝑡) need to be scaled accordingly by 1∕𝑑. In 
the following description, we assume 𝑑 = 1. For the initialization, we assume, that each individual stays exactly the mean stay time 
𝑇𝑍∕𝑛𝑍 in each subcompartment 𝑍𝑗 for 𝑍 ∈ ; c.f. Remark  3.6. We begin by defining the initial values for the disease state 𝐼 and then 
proceed to apply this method to the remaining compartments. By the mean stay time assumption for the initialization, individuals 
that are in subcompartment 𝐼𝑗 at time 𝑡0 are those who developed mild symptoms between the time points 𝑡0 − (𝑗 − 1) 𝑇𝐼∕𝑛𝐼  and 
𝑡0 − 𝑗 𝑇𝐼∕𝑛𝐼 . Consequently, the number of individuals in subcompartment 𝐼𝑗 at time 𝑡0 is 

𝐼𝑗 (𝑡0) = 𝛴𝐼,RKI

(

𝑡0 − (𝑗 − 1)
𝑇𝐼
𝑛𝐼

)

− 𝛴𝐼,RKI

(

𝑡0 − 𝑗
𝑇𝐼
𝑛𝐼

)

. (7)

Note that the number of cumulative confirmed cases is reported once per day, but the times at which we evaluate 𝛴𝐼,RKI does not 
necessarily correspond to these time points. If the calculation requires data between two consecutive days, the reported RKI data is 
interpolated linearly.

For the remaining compartments 𝑍 ∈ , the consideration can be applied analogously. Considering the transition probabilities, 
we obtain for the respective subcompartments the equations 

𝐸𝑗 (𝑡0) =
1
𝜇𝐼
𝐶

(

𝛴𝐼,RKI

(

𝑡0 + 𝑇𝐶 + (𝑛𝐸 − 𝑗 + 1)
𝑇𝐸
𝑛𝐸

)

− 𝛴𝐼,RKI

(

𝑡0 + 𝑇𝐶 + (𝑛𝐸 − 𝑗)
𝑇𝐸
𝑛𝐸

))

𝐶𝑗 (𝑡0) =
1
𝜇𝐼
𝐶

(

𝛴𝐼,RKI

(

𝑡0 + (𝑛𝐶 − 𝑗 + 1)
𝑇𝐶
𝑛𝐶

)

− 𝛴𝐼,RKI

(

𝑡0 + (𝑛𝐶 − 𝑗)
𝑇𝐶
𝑛𝐶

))

𝐻𝑗 (𝑡0) = 𝜇𝐻
𝐼

(

𝛴𝐼,RKI

(

𝑡0 − 𝑇𝐼 − (𝑗 − 1)
𝑇𝐻
𝑛𝐻

)

− 𝛴𝐼,RKI

(

𝑡0 − 𝑇𝐼 − 𝑗
𝑇𝐻
𝑛𝐻

))

𝑈𝑗 (𝑡0) = 𝜇𝑈
𝐻𝜇𝐻

𝐼

(

𝛴𝐼,RKI

(

𝑡0 − 𝑇𝐼 − 𝑇𝐻 − (𝑗 − 1)
𝑇𝑈
𝑛𝑈

)

− 𝛴𝐼,RKI

(

𝑡0 − 𝑇𝐼 − 𝑇𝐻 − 𝑗
𝑇𝑈
𝑛𝑈

))

.

(8)

Fig.  16 provides a schematic illustration of the relevant time intervals of the confirmed case data for the subcompartments of 
each compartment, exemplified by 𝑛𝑍 = 3 for all 𝑍 ∈ . While the number of patients in intensive care units is provided by an 
additional daily report [47], the data set does not include age-specific data. Therefore, we use the reported number of patients [47] 
to scale the result of (8) for compartment 𝑈 for each subcompartment and age group, ensuring that the initial total number of ICU 
patients is consistent to the reported data.

The compartments 𝑆, 𝑅 and 𝐷 are computed analogously to the ODE model in [59]. For the sake of completeness, we provide 
the formulas below. As the reported data for the deaths, 𝛴𝐷,RKI(𝑡), contain the deaths reporting only the day of the first positive test 
and the assumed day of infection — instead of the day of death, we include a time shift. The number of deaths is 

𝐷(𝑡 ) = 𝛴 (𝑡 − 𝑇 − 𝑇 − 𝑇 ). (9)
0 𝐷,RKI 0 𝐼 𝐻 𝑈
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Fig. 16. Illustration of the initialization method for LCT models. Visualization of the determination of the initial values for the LCT model for the starting 
time 𝑡0 = 0. The diagram is created for a model with 𝑛𝑧 = 3 subcompartments for all 𝑧 ∈ . The brackets indicate that the number of cases confirmed in that time 
interval determines the initial value for the specified compartment or subcompartment. The spaces between the times are set arbitrarily and do not correspond 
to the parameters used. This representation is inspired by [59].

The number of recovered individuals equals the total confirmed cases less deaths and the currently infected people, i.e.
𝑅(𝑡0) = 𝛴𝐼,RKI(𝑡0) − 𝐼(𝑡0) −𝐻(𝑡0) − 𝑈 (𝑡0) −𝐷(𝑡0).

Lastly, the set of susceptible individuals is set using the other compartment sizes,
𝑆(𝑡0) = 𝑁 −

∑

𝑍∈⧵𝑆
𝑍(𝑡0).

We compare our simulation results to extrapolated RKI data. To extrapolate the given data, we apply the method defined for the 
initial values for each simulation day (without division in subcompartments). The same scaling on basis of the detection ratio for 
the reported data as for the initialization is used. We adapt equation (7) for each simulation day 𝑡 to extrapolated data for mildly 
symptomatic individuals and time shift the number of deaths according to (9). A non-age-resolved number of ICU patients is set 
directly using [47]. Furthermore, we again look at the number of daily new transmissions 𝜎𝐸,RKI, which is the number of people 
transiting to compartment 𝐸 within one day. Therefore, according to (8), we use for simulation time 𝑡 the formula

𝜎𝐸,RKI(𝑡) =
1
𝜇𝐼
𝐶

(

𝛴𝐼,RKI(𝑡 + 𝑇𝐶 + 𝑇𝐸 ) − 𝛴𝐼,RKI(𝑡 + 𝑇𝐶 + 𝑇𝐸 − 1)
)

.

Fig. 17. Results for COVID-19 in Germany with start date Oct 1, 2020. Comparison of extrapolated RKI data with the simulation results of a simple ODE 
model and of LCT models with different assumptions regarding the number of subcompartments. We compare the number of daily new transmissions (top left), 
the number of mildly symptomatic individuals (top right), the number of patients in intensive care units (bottom left) and the number of deaths (bottom right). 
Notation as in Fig.  3.
839 



L. Plötzke et al. Mathematics and Computers in Simulation 239 (2026) 823–844 
We start our simulation on Oct. 1, 2020, and simulate for 45 days. In order to simulate the impact of NPIs, we manually adapt 
the contact rate during the simulation if the data indicate a different trend. We, however, keep the implemented change points 
minimal and only allow one change point in the simulation period as new NPIs were neither decreed on a daily nor weekly basis. 
Firstly, the daily contacts are scaled such that, in the beginning of the simulation, the simulation results for the number of daily 
new transmissions align with the extrapolated RKI data when all age groups are aggregated. Furthermore, on Oct. 25, 2020 the data 
indicate a trend change, such that we reduce the contacts by 30%, which represents the implementation of a NPI. In addition, we 
assume a detection ratio of 𝑑 = 1∕1.2 over the whole period.

The simulation results are depicted in Fig.  17. We accumulate the age-resolved simulation results. We see that all models roughly 
depict the trends of the infection dynamics. Suitable parameter fitting for the many degrees of freedom and additional numbers of 
change points can realistically match the simulation results from each of the models to the curves. Given the prior findings that 
Erlang distributed stay times are more realistic than those of exponential distributions, it can be deduced that the LCT models are 
better suited for matching the observed cases than the simple ODE model.

4.5. Run time analysis

In this section, we eventually study the performance of the implemented methods in MEmilio. We present the run time behavior 
of our implementation of the LCT model (1) and consider the parallel speedup through MPI-parallelized ensemble runs.

We start by considering the sequential runtime first. Our objective was to implement an efficient and flexible LCT model class 
from which we can create LCT models with arbitrary numbers of subcompartments and whose simulation’s run time increases at 
most linearly in the number of subcompartments employed. The authors of [60] indicate that researchers typically hard-code the 
numbers of subcompartments and write multiple ODE functions to consider different subcompartment numbers. However, our model 
allows the flexibility to set the number of subcompartments for each compartment 𝑍 ∈  and for each age group independently. 
Subcompartment realizations will be created upon compile-time, substantially reducing potential run-time overhead.

For the run time analysis, we use one age group and set the parameters to the previously described values, including the single 
value contact rate described in Section 4.3. In this analysis, we once more set the number of subcompartments, 𝑛𝑍 , to an equal 
value for all 𝑍 ∈ . The initial values are set to reasonable values according to reported data by RKI. All run time measurements 
are conducted on an Intel Xeon ‘‘Skylake’’ Gold 6132, 2.60 GHz with 14 cores per socket and four sockets.

Fig.  18 (left) depicts the run time taken to compute a numerical solution for the LCT model (1) under various assumptions 
regarding the number of subcompartments (𝑛𝑍 = 1,… , 100). For each number of subcompartments, we compute the average time 
needed over 100 runs. The simulations are performed for 20 days each and a Runge–Kutta scheme of fifth order with a fixed step 
size of 10−2 is used as mentioned in Section 4.1. The run time increases mostly linearly with the numbers of subcompartments used. 
With the -O3 optimization flag, we observe a jump in the run time from a number of 25 to 26 subcompartments. This occurs since 
the compiler includes additional optimizations for small vector sizes. By setting the optimization flag -O0, a strictly linear curve 
without jumps is obtained, see Fig.  18 (center).

Additionally, we benchmark a simulation using an adaptive Runge–Kutta Cash Karp 5(4) solver [61] without any limitations 
on the step size, while otherwise maintaining consistent model assumptions. The results regarding the run time and the number of 
time steps utilized are illustrated in Fig.  18 (right). We observe that the number of time steps increases linearly with the number of 
subcompartments. The investigation conducted without adaptive step sizing (i.e., with a constant number of steps) indicates a linear 
increase in run time. Therefore, we conclude that the run time per time step increases linearly with the number of subcompartments 
𝑛𝑍 . In conjunction with the linear growth in the number of steps, it is a logical hypothesis that the run time for the adaptive procedure 
increases quadratically in the number of subcompartments. As illustrated in Fig.  18 (right), the curve for the run time indeed has a 
shape that is consistent with that of a quadratic function.

From Fig.  18 (left), we see that 2000 equally-sized time steps corresponding to 20 simulation days with step size 10−2 of a model 
with more than 500 subcompartments (in total, 100 for compartments 𝐸, 𝐶, 𝐼 , 𝐻 , and 𝑈 , 1 for 𝑆, 𝑅, and 𝐷) can be computed in 
approximately 0.03 s. Using a more realistic, adaptive step size solver, we can even reduce this time by a factor of 3 to 4 and to 
approximately 0.008 s. This means that, even in a sequential context, more than 7500 simulations can be run in less than one minute 
on a rather old Xeon Skylake processor, making the model thus suitable to be run and fitted on any consumer laptop. Furthermore, 
for smaller numbers of subcompartments, as often used in the literature, the runtime is several magnitudes smaller and almost 5000 
executions of the LCT3 model can be run within one second on the mentioned processor.

Eventually, we demonstrate the potential speedup through distributed memory parallelism that we provide with the novel 
MEmilio model. Therefore, we use the parameters from the prior section and introduce two contact change points throughout a 
simulation period of 30 days where we vary the initial parameters in a range of ±10 %. As this section is purely compute performance 
oriented, we refrain from providing more details on the epidemiological setting here; the simulation, however, is open source and 
can be found with our submission. We use a taylored random number generator (RNG) to ensure the correct generation of random 
numbers on all parallel ranks ensuring no dependencies of the individual simulations through the RNG. We provide percentiles of 
an ensemble run with 16 384 simulations in Fig.  19 (left) and the strong scaling behavior in Fig.  19 (right). While in the ensemble 
run settings, the particular simulations can be run in parallel, a nonnegligible overhead comes from the collection and computation 
of the percentiles and statistics at the end of all simulations. From Fig.  19 (right), we see that we obtain very good speedup with 
three nodes of the Intel Xeon ‘‘Skylake’’ Gold 6132, providing, in total, 168 compute cores. We speed up the process by a factor of 
approximately 90.7.
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Fig. 18. Run time for the LCT model with different numbers of subcompartments. Run time for a solver with a fixed step size of 10−2 with optimization 
flag -O3 (left), with optimization flag -O0 (center), and run time along with the required time steps of an adaptive solver (right) to compute a numerical 
solution of the LCT model (1). The numbers of subcompartments are ranging from 1 to 100 and for the adaptive case to 200. For each subcompartment number, 
the average time of 100 runs is shown. Simulations are executed without age resolution and for 20 simulation days.

Fig. 19. Visualization of percentiles from ensemble run simulation and strong scaling behavior. Visualization of percentiles p5, p25, p50, p75, p95 for 
an ensemble run simulation of 30 days, 16 384 simulations and two contact change points (left) and strong scaling behavior from 1 to 168 cores (right).

5. Discussion

ODE-based models are a popular approach for modeling the spread of infectious diseases. However, simple ODE-based models 
implicitly assume that the stay time in each compartment is exponentially distributed, which is unrealistic from an epidemiological 
point of view. We used the LCT to set up a SECIR-type model that allows for Erlang distributed stay times in the compartments and 
thus generalizes simple ODE models. This allows for simulations with more realistic model behavior without the need to formulate 
complex models based on integro-differential equations. The resulting system is still formulated as an ODE system, which allows 
the use of already existing and efficient ODE solvers.

To choose an appropriate number of subcompartments, we only need the mean and variance of the stay time distribution. This 
can be advantageous, especially in the beginning of the spread of a disease, when the realistic stay time distributions might not 
be known yet. Even if the variance is unknown, using a number of subcompartments higher than one already leads to a better 
prediction [28]. While we can include more realistic model assumptions by using an LCT model instead of a simple ODE model and 
do not require exact knowledge of the stay time distribution as in the case of IDE models, it should be encouraged to also report 
variances from population cohort studies.

One goal of this study was to investigate the complex dependence and relationship between epidemic timings and peaks and the 
chosen number of subcompartments in an LCT model and to show that a general statement might be impossible to obtain. Here, 
we considered an advanced but fixed SECIR-type model and our findings might not directly apply to other models or model types. 
However, the key finding to thoroughly study these relationships with particular models and parameters before expectations on 
epidemic peaks and timings can be formulated, should be taken into account when developing LCT models.

To further relax assumptions on the stay time distribution while maintaining the use of ODEs, the Generalized Linear Chain 
Trick as presented in [5] can be applied. With this, it is possible to include phase-type distributions, which lie dense in the set of 
positive-valued distributions and thus allows for an even more flexible choice of stay time distributions.

The assumptions used in the COVID-19 inspired scenario could be enhanced. Firstly, the contact matrix was scaled globally, 
i.e., all age groups were scaled in the same way, at the beginning of the simulation as well as during the simulation when modeling 
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the implementation of a NPI. The contacts for the age groups could be scaled independently so that the simulation results match 
the extrapolated reported data in each age group. Moreover, one could think of introducing age specific detection ratios to include 
different testing strategies, for example, testing in schools where the younger age groups are tested more often than average.

However, the focus of this paper was to consider the implications of the LCT in a broader context than the application to a 
particular disease. A review of the literature revealed that the statements made in other publications are not universally valid.

6. Conclusion

In this paper, we used the LCT to propose an age-resolved model that includes detailed infection states and allows for Erlang 
distributed stay time distributions. The proposed LCT model is a generalization of a simple ODE model, wherein the assumption of 
an exponentially distributed stay time is replaced with a more realistic one. We furthermore analyzed several properties related to 
the LCT model. To demonstrate the importance of the distribution assumption, a collection of numerical experiments was conducted.

Our analyses indicate that the LCT model naturally incorporates a delay or lag time between a change in the contact rate 
and a corresponding change in the number of daily new transmissions, as well as in the Carrier and Infected compartment sizes. 
We observed that an increase in the number of subcompartments leads to a longer delay. One notable outcome is that the low 
variance of the stay times in models employing a high number of subcompartments may result in the emergence of wave patterns. 
Moreover, for our particular SECIR-type model, we found that the comparison of the timing and size of epidemic peaks for varying 
numbers of subcompartments is significantly influenced by the effective reproduction number and, consequently, by the selected 
parameters. While we numerically showed that the final size of an epidemic is not affected by the assumption of different numbers 
of subcompartments, simple ODE-based models can lead to overly optimistic or pessimistic predictions of the epidemic peaks as 
well as predict the true peak time too early or too late such that no general statement is possible. However, let us note that the 
particular influences of parameters and effective reproduction number depend on the particular model and model type and that the 
magnitudes of the influence might differ for other models.

We observed that the inclusion of age resolution enhances the accuracy of the simulations, enabling a more precise representation 
of the observed dynamics due to the incorporation of age-dependent parameters and initialization. In a scenario inspired by COVID-
19, we showed how different LCT models can be used to make predictions for realistic applications. It was demonstrated that the 
run time per step increases linearly with the number of subcompartments. Hence, the application of LCT models does not result in 
extensive additional costs. In our numerical results, we furthermore found that time-to-solution for an adaptive Runge–Kutta scheme 
scales quadratically with the number of subcompartments.

All in all, we have seen that applying the LCT to obtain Erlang distributed stay times can lead to widely different simulation 
results. In this paper, we demonstrated the complex relationship for a SECIR-type model. While it is unclear to which extent these 
findings directly apply to other models and model types, it might be overly optimistic to expect a simple relation between the 
epidemic peak size and timings and the number of subcompartments. Therefore, when using mathematical modeling, one should 
pay careful attention to the underlying model assumptions as well as to the choice of parameters.

In addition, a key contribution to the submitted paper is the modular software code for simple ODE and flexible LCT models 
that we provide. The modular structure of the code allows to extend non-age-resolved models with any age stratification with just 
two additional lines or parameters. Similar to age stratification, the number of subcompartments can be chosen flexible for any 
compartment and all choices made by the user are evaluated on compile-time such that the resulting C++ code runs highly efficient 
on consumer laptops and cluster infrastructure. Here, we simulated 16 384 runs and computed summary statistics in only 16 seconds 
with 168 compute cores. Using the three particular compute nodes, we obtained a speedup of approximately 90.7.

The findings can be easily applied to epidemiological models for other infectious diseases such as Ebola, see [29]. The concept 
of the LCT can be applied to other models based on ODEs with other applications, such as population dynamics [32]. Therefore, 
the results presented herein are not limited to our infectious disease model, but have broader applicability.

CRediT authorship contribution statement

Lena Plötzke: Writing – original draft, Software, Formal analysis, Visualization, Methodology, Data curation, Writing – review 
& editing, Validation, Investigation, Conceptualization. Anna Wendler: Writing – review & editing, Validation, Formal analysis, 
Writing – original draft, Software, Data curation, Visualization, Investigation. René Schmieding: Writing – review & editing, 
Validation, Software. Martin J. Kühn: Validation, Project administration, Funding acquisition, Supervision, Methodology, Formal 
analysis, Writing – review & editing, Resources, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared 
to influence the work reported in this paper.

Acknowledgments

This work was supported by the Initiative and Networking Fund of the Helmholtz Association (grant agreement number KA1-Co-
08, Project LOKI-Pandemics) and by the German Federal Ministry for Digital and Transport under grant agreement FKZ19F2211A 
(Project PANDEMOS). It was furthermore supported by the German Federal Ministry of Education and Research under grant 
agreement 031L0297B (Project INSIDe) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (grant 
agreement 528702961).
842 



L. Plötzke et al. Mathematics and Computers in Simulation 239 (2026) 823–844 
Data availability
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simulations.

References

[1] H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42 (4) (2000) http://dx.doi.org/10.1137/S0036144500371907.
[2] P. Daszak, J. Amuasi, C. das Neves, D. Hayman, T. Kuiken, B. Roche, C. Zambrana-Torrelio, P. Buss, H. Dundarova, Y. Feferholtz, G. Foldvari, E. Igbinosa, 

S. Junglen, Q. Liu, G. Suzan, M. Uhart, C. Wannous, K. Woolaston, P. Mosig Reidl, K. O’Brien, U. Pascual, P. Stoett, H. Li, H.T. Ngo, Workshop Report 
on Biodiversity and Pandemics of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), Tech. rep., IPBES Secretariat, Bonn, 
Germany, 2020, http://dx.doi.org/10.5281/zenodo.7432079.

[3] A..D. World Health Organization Team Data, World Health Statistics 2023: Monitoring Health for the SDGs, Sustainable Development Goals, Tech. rep., 
World Health Organization, Geneva, 2023, URL https://www.who.int/publications/i/item/9789240074323.

[4] J. Wallinga, M. Lipsitch, How generation intervals shape the relationship between growth rates and reproductive numbers, Proc. R. Soc. B: Biological Sci. 
274 (1609) (2007) http://dx.doi.org/10.1098/rspb.2006.3754.

[5] P.J. Hurtado, A.S. Kirosingh, Generalizations of the ‘linear chain trick’: incorporating more flexible dwell time distributions into mean field ODE models, 
J. Math. Biol. 79 (5) (2019) http://dx.doi.org/10.1007/s00285-019-01412-w.

[6] M.J. Kühn, D. Abele, T. Mitra, W. Koslow, M. Abedi, K. Rack, M. Siggel, S. Khailaie, M. Klitz, S. Binder, L. Spataro, J. Gilg, J. Kleinert, M. Häberle, 
L. Plötzke, C.D. Spinner, M. Stecher, X.X. Zhu, A. Basermann, M. Meyer-Hermann, Assessment of effective mitigation and prediction of the spread of 
SARS-CoV-2 in Germany using demographic information and spatial resolution, Math. Biosci. 339 (2021) http://dx.doi.org/10.1016/j.mbs.2021.108648.

[7] S. Pei, S. Kandula, J. Shaman, Differential effects of intervention timing on COVID-19 spread in the United States, Sci. Adv. 6 (49) (2020) http:
//dx.doi.org/10.1126/sciadv.abd6370.

[8] X. Chen, A. Zhang, H. Wang, A. Gallaher, X. Zhu, Compliance and containment in social distancing: mathematical modeling of COVID-19 across townships, 
Int. J. Geogr. Inf. Sci. 35 (3) (2021) http://dx.doi.org/10.1080/13658816.2021.1873999.

[9] M.W. Levin, M. Shang, R. Stern, Effects of short-term travel on COVID-19 spread: A novel SEIR model and case study in Minnesota, PloS One 16 (1) 
(2021) http://dx.doi.org/10.1371/journal.pone.0245919.

[10] J. Liu, G.P. Ong, V.J. Pang, Modelling effectiveness of COVID-19 pandemic control policies using an area-based SEIR model with consideration of infection 
during interzonal travel, Transp. Res. Part A: Policy Pr. 161 (2022) http://dx.doi.org/10.1016/j.tra.2022.05.003.

[11] H. Zunker, R. Schmieding, D. Kerkmann, A. Schengen, S. Diexer, R. Mikolajczyk, M. Meyer-Hermann, M.J. Kühn, Novel travel time aware metapopulation 
models and multi-layer waning immunity for late-phase epidemic and endemic scenarios, PLoS Comput. Biol. 20 (12) (2024) http://dx.doi.org/10.1371/
journal.pcbi.1012630.

[12] J.P. Medlock, Integro-Differential-Equation Models in Ecology and Epidemiology (Ph.D. thesis), University of Washington, 2004.
[13] E. Messina, M. Pezzella, A. Vecchio, A non-standard numerical scheme for an age-of-infection epidemic model, J. Comput. Dyn. 9 (2) (2022) http:

//dx.doi.org/10.3934/jcd.2021029.
[14] A. Wendler, L. Plötzke, H. Tritzschak, M.J. Kühn, A nonstandard numerical scheme for a novel SECIR integro-differential equation-based model allowing 

nonexponentially distributed stay times, Appl. Math. Comput. 509 (2026) http://dx.doi.org/10.1016/j.amc.2025.129636.
[15] N. Collier, M. North, Parallel agent-based simulation with repast for high performance computing, Simulation 89 (10) (2013) http://dx.doi.org/10.1177/

0037549712462620.
[16] L. Willem, S. Stijven, E. Tijskens, P. Beutels, N. Hens, J. Broeckhove, Optimizing agent-based transmission models for infectious diseases, BMC Bioinformatics 

16 (1) (2015) http://dx.doi.org/10.1186/s12859-015-0612-2.
[17] A. Bershteyn, J. Gerardin, D. Bridenbecker, C.W. Lorton, J. Bloedow, R.S. Baker, G. Chabot-Couture, Y. Chen, T. Fischle, K. Frey, J.S. Gauld, H. Hu, 

A.S. Izzo, D.J. Klein, D. Lukacevic, K.A. McCarthy, J.C. Miller, A.L. Ouedraogo, T.A. Perkins, J. Steinkraus, Q.A. ten Bosch, H.-F. Ting, S. Titova, B.G. 
Wagner, P.A. Welkhoff, E.A. Wenger, C.N. Wiswell, for the Institute for Disease Modeling, Implementation and applications of EMOD, an individual-based 
multi-disease modeling platform, Pathog. Dis. 76 (5) (2018) http://dx.doi.org/10.1093/femspd/fty059.

[18] D. Kerkmann, S. Korf, K. Nguyen, D. Abele, A. Schengen, C. Gerstein, J.H. Göbbert, A. Basermann, M.J. Kühn, M. Meyer-Hermann, Agent-based modeling 
for realistic reproduction of human mobility and contact behavior to evaluate test and isolation strategies in epidemic infectious disease spread, Comput. 
Biol. Med. 193 (2025) 110269, http://dx.doi.org/10.1016/j.compbiomed.2025.110269.

[19] R.A. Bradhurst, S.E. Roche, I.J. East, P. Kwan, M.G. Garner, A hybrid modeling approach to simulating foot-and-mouth disease outbreaks in Australian 
livestock, Front. Environ. Sci. 3 (2015) http://dx.doi.org/10.3389/fenvs.2015.00017.

[20] E. Hunter, B. Mac Namee, J. Kelleher, A hybrid agent-based and equation based model for the spread of infectious diseases, J. Artif. Soc. Soc. Simul. 23 
(4) (2020) http://dx.doi.org/10.18564/jasss.4421.

[21] J. Bicker, R. Schmieding, M. Meyer-Hermann, M. Kühn, Hybrid metapopulation agent-based epidemiological models for efficient insight on the individual 
scale: A contribution to green computing, Infect. Dis. Model. 10 (2025) http://dx.doi.org/10.1016/j.idm.2024.12.015.

[22] C. Robertson, C. Safta, N. Collier, J. Ozik, J. Ray, Bayesian calibration of stochastic agent based model via random forest, 2024, http://dx.doi.org/10.
48550/arXiv.2406.19524.

[23] A. Schmidt, H. Zunker, A. Heinlein, M.J. Kühn, Graph neural network surrogates to leverage mechanistic expert knowledge towards reliable and immediate 
pandemic response, Submitt. Publ. (2025) http://dx.doi.org/10.48550/arXiv.2411.06500.

[24] A. d’Onofrio, Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times, Appl. Math. Comput. 151 (1) 
(2004) http://dx.doi.org/10.1016/S0096-3003(03)00331-X.

[25] A.L. Lloyd, Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics, Theor. Popul. Biol. 60 (1) 
(2001) http://dx.doi.org/10.1006/tpbi.2001.1525.

[26] H.J. Wearing, P. Rohani, M.J. Keeling, Appropriate models for the management of infectious diseases, PLoS Med. 2 (7) (2005) http://dx.doi.org/10.1371/
journal.pmed.0020174.

[27] Z. Feng, D. Xu, H. Zhao, Epidemiological models with non-exponentially distributed disease stages and applications to disease control, Bull. Math. Biol. 
69 (5) (2007) http://dx.doi.org/10.1007/s11538-006-9174-9.

[28] O. Krylova, D.J.D. Earn, Effects of the infectious period distribution on predicted transitions in childhood disease dynamics, J. R. Soc. Interface 10 (84) 
(2013) http://dx.doi.org/10.1098/rsif.2013.0098.

[29] X. Wang, Y. Shi, Z. Feng, J. Cui, Evaluations of interventions using mathematical models with exponential and non-exponential distributions for disease 
stages: The case of Ebola, Bull. Math. Biol. 79 (9) (2017) http://dx.doi.org/10.1007/s11538-017-0324-z.
843 

https://github.com/SciCompMod/memilio
https://zenodo.org/records/14237545
https://github.com/SciCompMod/memilio-simulations
https://github.com/SciCompMod/memilio-simulations
https://github.com/SciCompMod/memilio-simulations
http://dx.doi.org/10.1137/S0036144500371907
http://dx.doi.org/10.5281/zenodo.7432079
https://www.who.int/publications/i/item/9789240074323
http://dx.doi.org/10.1098/rspb.2006.3754
http://dx.doi.org/10.1007/s00285-019-01412-w
http://dx.doi.org/10.1016/j.mbs.2021.108648
http://dx.doi.org/10.1126/sciadv.abd6370
http://dx.doi.org/10.1126/sciadv.abd6370
http://dx.doi.org/10.1126/sciadv.abd6370
http://dx.doi.org/10.1080/13658816.2021.1873999
http://dx.doi.org/10.1371/journal.pone.0245919
http://dx.doi.org/10.1016/j.tra.2022.05.003
http://dx.doi.org/10.1371/journal.pcbi.1012630
http://dx.doi.org/10.1371/journal.pcbi.1012630
http://dx.doi.org/10.1371/journal.pcbi.1012630
http://refhub.elsevier.com/S0378-4754(25)00308-8/sb12
http://dx.doi.org/10.3934/jcd.2021029
http://dx.doi.org/10.3934/jcd.2021029
http://dx.doi.org/10.3934/jcd.2021029
http://dx.doi.org/10.1016/j.amc.2025.129636
http://dx.doi.org/10.1177/0037549712462620
http://dx.doi.org/10.1177/0037549712462620
http://dx.doi.org/10.1177/0037549712462620
http://dx.doi.org/10.1186/s12859-015-0612-2
http://dx.doi.org/10.1093/femspd/fty059
http://dx.doi.org/10.1016/j.compbiomed.2025.110269
http://dx.doi.org/10.3389/fenvs.2015.00017
http://dx.doi.org/10.18564/jasss.4421
http://dx.doi.org/10.1016/j.idm.2024.12.015
http://dx.doi.org/10.48550/arXiv.2406.19524
http://dx.doi.org/10.48550/arXiv.2406.19524
http://dx.doi.org/10.48550/arXiv.2406.19524
http://dx.doi.org/10.48550/arXiv.2411.06500
http://dx.doi.org/10.1016/S0096-3003(03)00331-X
http://dx.doi.org/10.1006/tpbi.2001.1525
http://dx.doi.org/10.1371/journal.pmed.0020174
http://dx.doi.org/10.1371/journal.pmed.0020174
http://dx.doi.org/10.1371/journal.pmed.0020174
http://dx.doi.org/10.1007/s11538-006-9174-9
http://dx.doi.org/10.1098/rsif.2013.0098
http://dx.doi.org/10.1007/s11538-017-0324-z


L. Plötzke et al. Mathematics and Computers in Simulation 239 (2026) 823–844 
[30] W.O. Kermack, A.G. McKendrick, G.T. Walker, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A, Contain. Pap. A Math. 
Phys. Character 115 (772) (1927) http://dx.doi.org/10.1098/rspa.1927.0118.

[31] D. Breda, O. Diekmann, W.F. De Graaf, A. Pugliese, R. Vermiglio, On the formulation of epidemic models (an appraisal of Kermack and Mckendrick), J. 
Biol. Dyn. 6 (sup2) (2012) http://dx.doi.org/10.1080/17513758.2012.716454.

[32] N. MacDonald, Time Lags in Biological Models, in: Lecture Notes in Biomathematics, Springer, Berlin, Heidelberg, 1978, http://dx.doi.org/10.1007/978-
3-642-93107-9.

[33] Z. Feng, Y. Zheng, N. Hernandez-Ceron, H. Zhao, J.W. Glasser, A.N. Hill, Mathematical models of Ebola—Consequences of underlying assumptions, Math. 
Biosci. 277 (2016) http://dx.doi.org/10.1016/j.mbs.2016.04.002.

[34] D. Champredon, J. Dushoff, D.J.D. Earn, Equivalence of the Erlang-distributed SEIR epidemic model and the renewal equation, SIAM J. Appl. Math. 78 
(6) (2018) http://dx.doi.org/10.1137/18M1186411.

[35] L. Contento, N. Castelletti, E. Raimúndez, R. Le Gleut, Y. Schälte, P. Stapor, L.C. Hinske, M. Hoelscher, A. Wieser, K. Radon, C. Fuchs, J. Hasenauer, 
Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts, Epidemics 43 (2023) 
http://dx.doi.org/10.1016/j.epidem.2023.100681.

[36] G. Rozhnova, C.H. Van Dorp, P. Bruijning-Verhagen, M.C.J. Bootsma, J.H.H.M. Van De Wijgert, M.J.M. Bonten, M.E. Kretzschmar, Model-based evaluation of 
school- and non-school-related measures to control the COVID-19 pandemic, Nat. Commun. 12 (1) (2021) http://dx.doi.org/10.1038/s41467-021-21899-6.

[37] K.B. Blyuss, Y.N. Kyrychko, Effects of latency and age structure on the dynamics and containment of COVID-19, J. Theoret. Biol. 513 (2021) 
http://dx.doi.org/10.1016/j.jtbi.2021.110587.

[38] C.E. Overton, L. Pellis, H.B. Stage, F. Scarabel, J. Burton, C. Fraser, I. Hall, T.A. House, C. Jewell, A. Nurtay, F. Pagani, K.A. Lythgoe, EpiBeds: Data 
informed modelling of the COVID-19 hospital burden in England, in: C.J. Struchiner (Ed.), PLoS Comput. Biol. 18 (9) (2022) http://dx.doi.org/10.1371/
journal.pcbi.1010406.

[39] P. Birrell, J. Blake, E. Van Leeuwen, N. Gent, D. De Angelis, Real-time nowcasting and forecasting of COVID-19 dynamics in England: the first wave, Phil. 
Trans. R. Soc. B 376 (1829) (2021) http://dx.doi.org/10.1098/rstb.2020.0279.

[40] L. Plötzke, Der Linear Chain Trick in der Epidemiologischen Modellierung als Kompromiss Zwischen Gewöhnlichen Und Integro-Differentialgleichungen 
(Ph.D. thesis), Universität zu Köln, 2023, URL https://elib.dlr.de/203691/.

[41] T. Cassidy, P. Gillich, A.R. Humphries, C.H. Van Dorp, Numerical methods and hypoexponential approximations for gamma distributed delay differential 
equations, IMA J. Appl. Math. 87 (6) (2022) http://dx.doi.org/10.1093/imamat/hxac027.

[42] A.L. Lloyd, The dependence of viral parameter estimates on the assumed viral life cycle: limitations of studies of viral load data, Proc. R. Soc. Lond. [Biol] 
268 (1469) (2001) http://dx.doi.org/10.1098/rspb.2000.1572.

[43] J. Ma, D.J.D. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68 (3) (2006) 
http://dx.doi.org/10.1007/s11538-005-9047-7.

[44] M.J. Kühn, D. Abele, D. Kerkmann, S. Korf, H. Zunker, A. Wendler, J. Bicker, K. Nguyen, R. Schmieding, L. Plötzke, P. Lenz, M. Betz, C. Gerstein, A. Schmidt, 
R. Hannemann-Tamas, N. Waßmuth, P. Johannssen, H. Tritzschak, D. Richter, M. Klitz, W. Koslow, S. Binder, M. Siggel, J. Kleinert, K. Rack, A. Lutz, 
M. Meyer-Hermann, MEmilio v1.3.0 - A high performance modular EpideMIcs simulation software, 2024, http://dx.doi.org/10.5281/zenodo.14237545, 
Zenodo. https://elib.dlr.de/201660/.

[45] Regionaldatenbank Deutschland, Fortschreibung des Bevölkerungsstandes: 12411-04-02-4-B Bevölkerung nach Geschlecht und Altersjahren (79) - Stichtag 
31.12. - (ab 2011) regionale Ebenen, 2024, URL https://www.regionalstatistik.de/genesis//online?operation=table&code=12411-04-02-4-B&bypass=true&
levelindex=1&levelid=1721805645378#abreadcrumb. key date used: 31.12.2020.

[46] Robert Koch-Institut, SARS-CoV-2 Infektionen in Deutschland, 2024, http://dx.doi.org/10.5281/zenodo.4681153, Zenodo.
[47] Robert Koch-Institut, Intensivkapazitäten und COVID-19-Intensivbettenbelegung in Deutschland, Berlin, 2024, http://dx.doi.org/10.5281/zenodo.13236164.
[48] M.J. Keeling, B.T. Grenfell, Understanding the persistence of measles: reconciling theory, simulation and observation, Proc. R. Soc. Lond. [Biol] 269 (1489) 

(2002) http://dx.doi.org/10.1098/rspb.2001.1898.
[49] Robert Koch-Institut, Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) am 15.10.2020, Tech. rep., 2020, 2020, https://www.rki.

de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Okt_2020/2020-10-15-de.pdf?__blob=publicationFile.
[50] T. Dey, J. Lee, S. Chakraborty, J. Chandra, A. Bhaskar, K. Zhang, A. Bhaskar, F. Dominici, Lag time between state-level policy interventions and change 

points in COVID-19 outcomes in the United States, Patterns 2 (8) (2021) http://dx.doi.org/10.1016/j.patter.2021.100306.
[51] N. Guglielmi, E. Iacomini, A. Viguerie, Identification of time delays in COVID-19 data, Epidemiologic Methods 12 (1) (2023) http://dx.doi.org/10.1515/em-

2022-0117.
[52] S.P. Blythe, R.M. Anderson, Distributed incubation and infectious periods in models of the transmission dynamics of the human immunodeficiency virus 

(HIV), Math. Med. Biol. 5 (1) (1988) http://dx.doi.org/10.1093/imammb/5.1.1.
[53] O. Diekmann, H.G. Othmer, R. Planqué, M.C.J. Bootsma, The discrete-time Kermack–Mckendrick model: A versatile and computationally attractive 

framework for modeling epidemics, Proc. Natl. Acad. Sci. 118 (39) (2021) http://dx.doi.org/10.1073/pnas.2106332118.
[54] S.M. Kissler, C. Tedijanto, E. Goldstein, Y.H. Grad, M. Lipsitch, Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period, 

Science 368 (6493) (2020) http://dx.doi.org/10.1126/science.abb5793.
[55] F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical Models in Epidemiology, in: Texts in Applied Mathematics, vol. 69, Springer, New York, NY, 2019, 

http://dx.doi.org/10.1007/978-1-4939-9828-9.
[56] F. Brauer, Age-of-infection and the final size relation, Math. Biosci. Eng. : MBE 5 (4) (2008) http://dx.doi.org/10.3934/mbe.2008.5.681.
[57] K. Prem, A.R. Cook, M. Jit, Projecting social contact matrices in 152 countries using contact surveys and demographic data, PLoS Comput. Biol. 13 (9) 

(2017) http://dx.doi.org/10.1371/journal.pcbi.1005697.
[58] L. Fumanelli, M. Ajelli, P. Manfredi, A. Vespignani, S. Merler, Inferring the structure of social contacts from demographic data in the analysis of infectious 

diseases spread, in: M. Salathé (Ed.), PLoS Comput. Biol. 8 (9) (2012) http://dx.doi.org/10.1371/journal.pcbi.1002673.
[59] W. Koslow, M.J. Kühn, S. Binder, M. Klitz, D. Abele, A. Basermann, M. Meyer-Hermann, Appropriate relaxation of non-pharmaceutical interventions 

minimizes the risk of a resurgence in SARS-CoV-2 infections in spite of the Delta variant, in: C.J. Struchiner (Ed.), PLoS Comput. Biol. 18 (5) (2022) 
http://dx.doi.org/10.1371/journal.pcbi.1010054.

[60] P.J. Hurtado, C. Richards, Building mean field ODE models using the generalized linear chain trick & Markov chain theory, J. Biol. Dyn. 15 (sup1) (2021) 
http://dx.doi.org/10.1080/17513758.2021.1912418.

[61] J.R. Cash, A.H. Karp, A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides, ACM Trans. Math. Software 
16 (3) (1990) http://dx.doi.org/10.1145/79505.79507.
844 

http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1080/17513758.2012.716454
http://dx.doi.org/10.1007/978-3-642-93107-9
http://dx.doi.org/10.1007/978-3-642-93107-9
http://dx.doi.org/10.1007/978-3-642-93107-9
http://dx.doi.org/10.1016/j.mbs.2016.04.002
http://dx.doi.org/10.1137/18M1186411
http://dx.doi.org/10.1016/j.epidem.2023.100681
http://dx.doi.org/10.1038/s41467-021-21899-6
http://dx.doi.org/10.1016/j.jtbi.2021.110587
http://dx.doi.org/10.1371/journal.pcbi.1010406
http://dx.doi.org/10.1371/journal.pcbi.1010406
http://dx.doi.org/10.1371/journal.pcbi.1010406
http://dx.doi.org/10.1098/rstb.2020.0279
https://elib.dlr.de/203691/
http://dx.doi.org/10.1093/imamat/hxac027
http://dx.doi.org/10.1098/rspb.2000.1572
http://dx.doi.org/10.1007/s11538-005-9047-7
http://dx.doi.org/10.5281/zenodo.14237545
https://elib.dlr.de/201660/
https://www.regionalstatistik.de/genesis//online?operation=table&code=12411-04-02-4-B&bypass=true&levelindex=1&levelid=1721805645378#abreadcrumb
https://www.regionalstatistik.de/genesis//online?operation=table&code=12411-04-02-4-B&bypass=true&levelindex=1&levelid=1721805645378#abreadcrumb
https://www.regionalstatistik.de/genesis//online?operation=table&code=12411-04-02-4-B&bypass=true&levelindex=1&levelid=1721805645378#abreadcrumb
http://dx.doi.org/10.5281/zenodo.4681153
http://dx.doi.org/10.5281/zenodo.13236164
http://dx.doi.org/10.1098/rspb.2001.1898
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Okt_2020/2020-10-15-de.pdf?__blob=publicationFile
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Okt_2020/2020-10-15-de.pdf?__blob=publicationFile
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Okt_2020/2020-10-15-de.pdf?__blob=publicationFile
http://dx.doi.org/10.1016/j.patter.2021.100306
http://dx.doi.org/10.1515/em-2022-0117
http://dx.doi.org/10.1515/em-2022-0117
http://dx.doi.org/10.1515/em-2022-0117
http://dx.doi.org/10.1093/imammb/5.1.1
http://dx.doi.org/10.1073/pnas.2106332118
http://dx.doi.org/10.1126/science.abb5793
http://dx.doi.org/10.1007/978-1-4939-9828-9
http://dx.doi.org/10.3934/mbe.2008.5.681
http://dx.doi.org/10.1371/journal.pcbi.1005697
http://dx.doi.org/10.1371/journal.pcbi.1002673
http://dx.doi.org/10.1371/journal.pcbi.1010054
http://dx.doi.org/10.1080/17513758.2021.1912418
http://dx.doi.org/10.1145/79505.79507

	Revisiting the Linear Chain Trick in epidemiological models: Implications of underlying assumptions for numerical solutions
	Introduction
	An age-resolved SECIR-type Linear Chain Trick model
	Properties of the LCT model
	Numerical simulations
	Parameter selection and data
	Impact of the distribution assumption on model behavior
	Behavior at change points
	Epidemic peaks and final size

	Impact of age resolution
	Simulation of COVID-19 in Germany
	Run time analysis

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


