Wassing, Simon und Langer, Stefan und Bekemeyer, Philipp (2025) Physics-informed neural networks for inviscid transonic flows around an airfoil. Physics of Fluids, 37 (8). American Institute of Physics (AIP). doi: 10.1063/5.0276518. ISSN 1070-6631.
|
PDF
- Postprintversion (akzeptierte Manuskriptversion)
9MB |
Offizielle URL: https://pubs.aip.org/aip/pof/article/37/8/086169/3360261/Physics-informed-neural-networks-for-inviscid
Kurzfassung
Physics-informed neural networks (PINNs) have gained popularity as a deep-learning-based parametric partial differential equation solver. Especially for engineering applications, this approach is promising because a single neural network (NN) could substitute many classical simulations in multi-query scenarios. In aerodynamics, transport equations, such as the Euler equations, need to be solved. These equations model an inviscid, compressible fluid and can pose a significant challenge for the PINN approach. Only recently, researchers have successfully solved subsonic flows around airfoils by utilizing mesh transformations to precondition the training of the NN. However, compressible flows in the transonic regime could not be accurately approximated due to shock waves resulting in local discontinuities. In this article, we propose techniques to successfully approximate solutions of the compressible Euler equations for sub- and transonic flows with PINNs. Inspired by classical numerical algorithms for solving conservation laws, the presented method locally introduces artificial dissipation to stabilize shock waves. We compare different viscosity variants, such as scalar- and matrix-valued artificial viscosity, and validate the method at transonic flow conditions for an airfoil, obtaining good agreement with finite-volume simulations. Finally, the suitability for parametric problems is showcased by approximating transonic solutions at varying angles of attack with a single network. The presented work proposes a solution to the previously encountered difficulties for PINNs in transonic flow conditions, enabling the application as parametric solvers to a new class of industrially relevant flow conditions in aerodynamics and beyond.
| elib-URL des Eintrags: | https://elib.dlr.de/217476/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
| Titel: | Physics-informed neural networks for inviscid transonic flows around an airfoil | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 22 August 2025 | ||||||||||||||||
| Erschienen in: | Physics of Fluids | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||
| Band: | 37 | ||||||||||||||||
| DOI: | 10.1063/5.0276518 | ||||||||||||||||
| Verlag: | American Institute of Physics (AIP) | ||||||||||||||||
| ISSN: | 1070-6631 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Deep learning, Artificial neural networks, Numerical algorithms, Fluid dynamics, Compressible flows, Aerodynamics, Shock waves, Transonic flows | ||||||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
| DLR - Schwerpunkt: | Quantencomputing-Initiative | ||||||||||||||||
| DLR - Forschungsgebiet: | QC AW - Anwendungen | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | QC - ToQuaFlics | ||||||||||||||||
| Standort: | Braunschweig | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, BS | ||||||||||||||||
| Hinterlegt von: | Wassing, Simon | ||||||||||||||||
| Hinterlegt am: | 25 Nov 2025 11:11 | ||||||||||||||||
| Letzte Änderung: | 02 Dez 2025 13:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags