elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Exploration of stochastic quasi-Newton optimization for physics-informed neural networks

Wagner, Fabian (2025) Exploration of stochastic quasi-Newton optimization for physics-informed neural networks. Bachelorarbeit, Duale Hochschule Baden-Württemberg (DHBW).

[img] PDF - Nur DLR-intern zugänglich
2MB

Kurzfassung

Partial differential equations play a central role in modeling physical systems. However, classical numerical methods such as finite elements or finite volumes are limited due to their computational complexity. Recently, machine learning methods and in particular physics-informed neural networks have emerged as promising alternatives, embedding physical laws directly into the training process. Training physics-informed neural networks requires solving a challenging optimization problem. While first-order optimizers such as stochastic gradient descent are standard in deep learning, second-order methods like quasi-Newton algorithms can potentially offer faster convergence and improved accuracy. However, deterministic quasi-Newton methods are not directly suitable for stochastic optimization, which is typically used in neural network training. This motivates the investigation of stochastic quasi-Newton methods as potential optimizers for physics-informed neural networks. This thesis investigates a stochastic quasi-Newton method for training physics-informed neural networks using three benchmark problems. These investigations study the accuracy as well as the training time and memory costs of this method, evaluating the general applicability of advanced second-order optimization algorithms for physics-informed neural networks.

elib-URL des Eintrags:https://elib.dlr.de/217473/
Dokumentart:Hochschulschrift (Bachelorarbeit)
Titel:Exploration of stochastic quasi-Newton optimization for physics-informed neural networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wagner, Fabianfabian.wagner (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorWassing, SimonSimon.Wassing (at) dlr.dehttps://orcid.org/0009-0008-4702-1358
Datum:2025
Open Access:Nein
Seitenanzahl:69
Status:veröffentlicht
Stichwörter:stochastic, optimization, deep learning, physics-informed, neural network, partial differential equation, algorithm
Institution:Duale Hochschule Baden-Württemberg (DHBW)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtuelles Flugzeug und Validierung, L - Digitale Technologien
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > CASE, BS
Hinterlegt von: Wassing, Simon
Hinterlegt am:25 Nov 2025 10:20
Letzte Änderung:25 Nov 2025 10:20

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.