elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Adopting Computational Fluid Dynamics concepts for Physics-Informed Neural Networks

Wassing, Simon und Langer, Stefan und Bekemeyer, Philipp (2025) Adopting Computational Fluid Dynamics concepts for Physics-Informed Neural Networks. In: AIAA SciTech 2025 Forum. American Institute of Aeronautics and Astronautics, Inc.. AIAA SCITECH 2025 Forum, 2025-01-06 - 2025-01-10, Orlando, Florida, USA. doi: 10.2514/6.2025-0269. ISBN 978-162410723-8.

[img] PDF - Nur DLR-intern zugänglich
4MB

Offizielle URL: https://arc.aiaa.org/doi/10.2514/6.2025-0269

Kurzfassung

Aerodynamic flows can be described by the compressible Navier-Stokes equations which can be simplified to the compressible Euler equations when neglecting the viscous terms. In engineering applications, solutions to the corresponding boundary value problems are important, for example, to draw conclusions about the aerodynamic forces. Classical methods, often based on finite-volume discretization strategies, are a valuable tool for this task. However, transferring these classical approaches to potentially advantageous hardware like graphic processing units and quantum computers, promising a significant speed-up, seems to be challenging. Recently, neural networks have been adapted as an alternative approach for the approximation of solutions to partial differential equations. We investigate the physics-informed neural network approach as a method for solving the compressible Euler equations, with the intention of determining whether this approach can also be implemented better on future hardware. Unlike classical neural networks, physics-informed neural networks directly incorporate a partial differential equation into the loss function during the network's training process. This enables the neural network to approximate the solution to the partial differential equation. However, obtaining accurate solutions to the compressible Euler equations employing the physics-informed neural network methodology has shown to be challenging. In this article, we demonstrate how computational concepts, well-known from classical methods, such as artificial viscosity and mesh transformation, can be adapted for physics-informed neural networks. Based on the inviscid Burgers' equation, we derive shock capturing methods which can be transferred to successfully solve the compressible Euler equations. We apply these approaches to a sub- and a transonic test case and compare the method with finite-volume results.

elib-URL des Eintrags:https://elib.dlr.de/217437/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Adopting Computational Fluid Dynamics concepts for Physics-Informed Neural Networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wassing, SimonSimon.Wassing (at) dlr.dehttps://orcid.org/0009-0008-4702-1358NICHT SPEZIFIZIERT
Langer, StefanStefan.Langer (at) dlr.dehttps://orcid.org/0009-0004-3760-4243197866849
Bekemeyer, PhilippPhilipp.Bekemeyer (at) dlr.dehttps://orcid.org/0009-0001-9888-2499NICHT SPEZIFIZIERT
Datum:3 Januar 2025
Erschienen in:AIAA SciTech 2025 Forum
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.2514/6.2025-0269
Verlag:American Institute of Aeronautics and Astronautics, Inc.
Name der Reihe:AIAA SCITECH 2025 Forum 2025
ISBN:978-162410723-8
Status:veröffentlicht
Stichwörter:Aerodynamics, Aerospace Sciences, Artificial Neural Network, Computational Fluid Dynamics
Veranstaltungstitel:AIAA SCITECH 2025 Forum
Veranstaltungsort:Orlando, Florida, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:6 Januar 2025
Veranstaltungsende:10 Januar 2025
Veranstalter :American Institute of Aeronautics and Astronautics (AIAA)
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Quantencomputing-Initiative
DLR - Forschungsgebiet:QC AW - Anwendungen
DLR - Teilgebiet (Projekt, Vorhaben):QC - ToQuaFlics
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > CASE, BS
Hinterlegt von: Wassing, Simon
Hinterlegt am:25 Nov 2025 10:08
Letzte Änderung:02 Dez 2025 13:24

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.