elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Tailored minimal reservoir computing: On the bidirectional connection between nonlinearities in the model and in data

Prosperino, Davide und Ma, Haochun und Räth, Christoph (2025) Tailored minimal reservoir computing: On the bidirectional connection between nonlinearities in the model and in data. Chaos, 35, 093105. American Institute of Physics (AIP). doi: 10.1063/5.0272793. ISSN 1054-1500.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://pubs.aip.org/aip/cha/article/35/9/093105/3361534

Kurzfassung

We study how the degree of nonlinearity in the input data affects the optimal design of reservoir computers (RCs), focusing on how closely the model’s nonlinearity should align with that of the data. By reducing minimal RCs to a single tunable nonlinearity parameter, we explore how the predictive performance varies with the degree of nonlinearity in the model. To provide controlled testbeds, we generalize to the fractional Halvorsen system, a novel chaotic system with fractional exponents. Our experiments reveal that the prediction performance is maximized when the model’s nonlinearity matches the nonlinearity present in the data. In cases where multiple nonlinearities are present in the data, we find that the correlation dimension of the predicted signal is reconstructed correctly when the smallest nonlinearity is matched. We use this observation to propose a method for estimating the minimal nonlinearity in unknown time series, by sweeping the model exponent and identifying the transition to a successful reconstruction. Applying this method to both synthetic and real-world datasets, including financial time series, we demonstrate its practical viability. Additionally, we briefly study the SINDy framework as a complementary approach for identifying nonlinearities in data. Finally, we transfer these insights to classical RCs, by augmenting traditional architectures with fractional, generalized reservoir states. This yields performance gains, particularly in resource-constrained scenarios, such as physical reservoirs, where increasing reservoir size is impractical or economically unviable. Our work provides a principled route toward tailoring RCs to the intrinsic complexity of the systems they aim to model.

elib-URL des Eintrags:https://elib.dlr.de/217165/
Dokumentart:Zeitschriftenbeitrag
Titel:Tailored minimal reservoir computing: On the bidirectional connection between nonlinearities in the model and in data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Prosperino, DavideAGINICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ma, HaochunLMUNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Räth, ChristophChristoph.Raeth (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:4 September 2025
Erschienen in:Chaos
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:35
DOI:10.1063/5.0272793
Seitenbereich:093105
Verlag:American Institute of Physics (AIP)
ISSN:1054-1500
Status:veröffentlicht
Stichwörter:Complex Systems, Time Series Analysis, Prediction AI, Reservoir Computing, Stock Market
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D KIZ - Künstliche Intelligenz
DLR - Teilgebiet (Projekt, Vorhaben):D - Kurzstudien [KIZ]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Materialphysik im Weltraum > Wissenschaftliche Experimente
Hinterlegt von: Räth, Christoph
Hinterlegt am:06 Okt 2025 09:36
Letzte Änderung:06 Okt 2025 09:36

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.