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ABSTRACT

We study how the degree of nonlinearity in the input data affects the optimal design of reservoir computers (RCs), focusing on how closely the
model’s nonlinearity should align with that of the data. By reducing minimal RCs to a single tunable nonlinearity parameter, we explore how
the predictive performance varies with the degree of nonlinearity in the model. To provide controlled testbeds, we generalize to the fractional
Halvorsen system, a novel chaotic system with fractional exponents. Our experiments reveal that the prediction performance is maximized
when the model’s nonlinearity matches the nonlinearity present in the data. In cases where multiple nonlinearities are present in the data,
we find that the correlation dimension of the predicted signal is reconstructed correctly when the smallest nonlinearity is matched. We use
this observation to propose a method for estimating the minimal nonlinearity in unknown time series, by sweeping the model exponent and
identifying the transition to a successful reconstruction. Applying this method to both synthetic and real-world datasets, including financial
time series, we demonstrate its practical viability. Additionally, we briefly study the SINDy framework as a complementary approach for
identifying nonlinearities in data. Finally, we transfer these insights to classical RCs, by augmenting traditional architectures with fractional,
generalized reservoir states. This yields performance gains, particularly in resource-constrained scenarios, such as physical reservoirs, where
increasing reservoir size is impractical or economically unviable. Our work provides a principled route toward tailoring RCs to the intrinsic
complexity of the systems they aim to model.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0272793

. INTRODUCTION

Reservoir computing'~ is a machine learning framework for
modeling and predicting nonlinear dynamical systems, built on
the idea of using a fixed recurrent dynamical system—the reser-
voir—and linearly combining its dynamics to create predictions. The
work by Lukosevi¢ius and Jaeger' offers a great introduction to the
theory of traditional reservoir computers (RCs).

Reservoir computing is a powerful tool for modeling nonlinear
systems, but its design often relies on heuristics. Here, we show
that predictive accuracy improves when the model’s nonlinear-
ity is matched to that of the data. Using a deterministic, minimal
reservoir framework and a novel chaotic system with tunable frac-
tional exponents, we isolate this relationship and demonstrate
that the smallest nonlinearity in the data plays a key role. This
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insight enables a method to estimate nonlinearity from time series
alone, which we validate on synthetic and real-world data, includ-
ing financial markets. We also show how augmenting classical
reservoirs with tailored nonlinearities improves performance,
which is especially useful in hardware-limited settings.

Despite its practical success in synthetic systems™ and real-
world systems,””'" classical reservoir computers remain somewhat
heuristic. The reservoir’s weights are initialized randomly, and
while empirical studies on the reservoir structure and weights have
been performed,'>" the optimal design of the reservoir is not well
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understood analytically. This randomness and complexity hinder a
principled understanding of why RCs work so well, since we need to
account not only for the choice of parameters, but also for the actual
realization of the random numbers used in the process.

The topic of randomness in traditional RC has been addressed
in two ways: In so-called “next generation reservoir computing”
(NGRCQC)," the reservoir is replaced by linear and nonlinear com-
binations of the input variables and their time lags without any
weights. While this approach performs very well, also with lim-
ited training data," the typical character of a reservoir as being a
dynamical substrate with (fading) memory, which responds to some
input data, is lost in this RC setup. In minimal reservoir computing
(minRC),'® however, the reservoir still exists and the reservoir states
are iteratively fed through a reservoir creating a dynamical system.
The key difference between the two is that NGRC eliminates the
reservoir entirely and replaces it with handcrafted lagged features,
whereas minimal RC retains a true, though simplified, dynamical
reservoir structure. As a result, minimal RC preserves the core con-
cept of memory-driven dynamics, while NGRC trades this for a
purely feature-based representation.

The reservoir in minimal RC exists, but it is simplified by
replacing the large random network with a structured block-
diagonal matrix splitting the reservoir into multiple smaller sub-
reservoirs, each working on a single feature. All random elements
in the input layer and in the reservoir are removed, enabling a sys-
tematic analysis of RC architectures. Furthermore, the nonlinear
activation at each reservoir node can be replaced by shifting the
nonlinearity to the output layer: The readout operates on gener-
alized reservoir states that include powers of the reservoir’s linear
state evolution. This deterministic setup retains RC’s computational
efficiency but yields a more interpretable, tractable model.

Building on this minimal RC framework, this work focuses on a
fundamental question: How nonlinear should the reservoir states be
in order to adequately model given nonlinear input data? In classi-
cal or minimal RC, the approach is to introduce nonlinear reservoir
features to help capture nonlinear structures in the input. However,
it remains unclear what degree of nonlinearity is truly needed in
the reservoir states to represent the nonlinear dynamics of the data.
Intuitively, if the input data’s dynamics are only mildly nonlinear, an
overly strong nonlinearity in the reservoir states might be unneces-
sary (or even detrimental), whereas if the data’s generative process is
highly nonlinear, linear or weakly nonlinear reservoir states will be
insufficient to capture its behavior. We aim to formalize this intu-
ition and determine how to tailor the model’s nonlinearity to the
complexity of the input.

In this study, we introduce a tailored minimal RC approach
to systematically investigate the matching of data and reservoir
states” nonlinearities. In Sec. I11, we reduce the minimal RC model
to its essence by using a single tunable nonlinearity parameter
in the generalized reservoir states, and we examine the impact of
this nonlinearity on prediction performance for datasets of varying
complexity.

All traditional chaotic systems use integer exponents as non-
linearities with the Thomas system’s'” sine function being a notable
exception. Here, in Sec. II, we introduce a fractional Halvorsen sys-
tem as a novel data generator, generalizing the classical Halvorsen
attractor to fractional exponents in the nonlinear terms. This allows
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us to produce time series with a controllable degree of nonlinearity,
providing an ideal testbed for our study.

We use these data to perform extensive experiments in Sec. V
measuring the prediction performance and studying the relationship
between nonlinearity in the data and nonlinearity in the model.

Applying our findings in reverse, we find in Sec. VI that we can
use this framework to determine the smallest nonlinearity present
in the data by measuring the prediction performance over different
nonlinearities in the model and noting when the prediction error
minimizes. There we compare our findings against using SINDy.
Lastly, in that section, we also transfer our insights from minimal
RCs to improve the performance of classical RCs by introducing
fractional, generalized reservoir states.

Il. DATA

Originally introduced as a model for atmospheric convection,
the Lorenz system'® has become the benchmark system in the study
of chaotic systems and has been extensively used in research on
reservoir computers.”® However, its nonlinearities consist of mixed
variables, which make it hard to control the exponent, and thus the
nonlinearity. For this reason, we introduce the Halvorsen system'’
in our study, after performing initial studies on the Lorenz system.
We introduce a modified version of the Halvorsen system, in which
we can control the nonlinearity in the data more precisely.

For all our integrations of the trajectories, we use the explicit
Runge-Kutta method of order 5(4)* utilizing a step size of At
= 0.01 unless stated otherwise. Our initial condition consists of
a uniformly distributed random value between —20 and 20 for
the Lorenz system, and due to stability reasons we use the point

(01 o0 O)T as the initial condition for all Halvorsen realizations.
In each case, we discard the first 10* steps as transient behavior.

For all calculations involving reservoir computers, we use the
SCAN software package,” and for all calculations involving SINDy
we use the PySINDy package.”>*

A. Lorenz system

The Lorenz system is a set of coupled nonlinear differential
equations given by'*

X = —0ox +0x,, (1a)
Xy = px1 — X2 — X1X3, (1b)
X3 = —Bx; + x1%, (10)

where we use the standard parametrization exhibiting chaotic
behavior of 0 = 10, p = 28,and 8 = %

While previous studies have explored variations in the Lorenz
system’s nonlinear terms,** controlling the overall degree of nonlin-
earity across coordinates remains challenging due to the nonlinear-
ity consisting of combinations of two variables.

B. Fractional Halvorsen system

The Halvorsen system, in contrast to the Lorenz system, is a
chaotic system which has its nonlinearities in a single variable in
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each dimension. Originally, the nonlinearity consists of quadratic
terms. However, in this work, we want to introduce fractional expo-
nents in each dimension. This allows for a control of the nonlinearity
of the system by modifying the exponent in each equation, which
leads to the introduction of the modified, fractional Halvorsen
system given by

X = —ax; — 4x, — 4x; — xil, (2a)
Xy = —ax, — 4xz — 4x; — x?, (2b)
X3 = —ax; — 4x; — 4x, — x?. (2¢)

The canonical choice displaying chaotic behavior is @ = 1.3 and §;
= 2. However, for this study, we want to explore different values of
&;. Here, we do not want to limit ourselves to integer exponents, but
introduce the study of fractional exponents in this context.

For fractional exponents of the form §; = %, we need to rewrite

nj
Egs. (2) slightly and use the definition of x4 = ¥/x" to substitute
for x%. In order to prevent complex-valued trajectories, we limit
ourselves to even choices for n;.

During our studies, we discovered that a denominator of d
= 50 provides a good trade-off between the accessible granularity
and computational stability.

In Fig. 1, we performed a grid search over the two free param-
eters of the fractional Halvorsen system, in order to find the region
of interest with chaotic behavior. Here, we fix all exponents to be
the same with §; = & = &, = &. We found that for a parameter of
a = 3.98 we observe chaotic behavior over a range of exponents &;.

C. Thomas system

The Thomas system'” is a chaotic system, which has its non-
linearity not in exponentiation, but instead in a sine function. It is

defined by

X = —bx, + sinx,, (3a)
X, = —bx, + sinxs, (3b)
X3 = —bx; + sinx, (3¢)

where we use a parameter of b = 0.21. The sine function can be
defined by Taylor expansion as a sum of polynomials, where the first
nonlinear term appears as third order.

D. Surrogate systems

Surrogating the data destroys the nonlinear properties of a time
series while keeping the linear ones unaffected.”” In Sec. VI A, we
aim to identify the smallest nonlinearity in a given time series. To
ensure that the observed effects indeed arise from nonlinearity in the
data, we generate Fourier transform (FT) surrogates. If the measure
from the original time series differs significantly from this linearized
background, it strongly indicates that the observed effect stems from
the system’s nonlinearity. In this study, we restrict ourselves to the
use of FT surrogates, since there is evidence that only this class of
surrogates reliably destroys all nonlinearities in the data.”*~**
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We create the surrogate time series by first performing a
Fourier transformation F on the original time series x, separating
the data into amplitudes Ay and phases ¢;. The linear properties are
now stored in the amplitudes and the nonlinear ones in the phases.
By replacing the original phases ¢ with uniformly distributed num-
bers between [0, 277 ], ¢;““d, we destroy the nonlinear features of the
original time series. The surrogate time series x, is then given by the
inverse Fourier transformation ™! of the original amplitudes A,
with the randomized phases ¢, sketched by

X, = ?_1[Ak exp (i¢,ﬁ“"d)]. (4)

In order to get a robust estimate of the surrogate measures, we
create multiple realizations of the surrogate time series and calculate
the measure of interest across all of them and report the average with
a standard deviation indicating the spread of the values.

I1l. RESERVOIR COMPUTING

A reservoir computer (RC) is a specialized form of recurrent
neural network in which the recurrent connections remain fixed
after initialization, rather than being adapted during training. The
input signal is mapped into a random, high-dimensional state space,
causing the randomly defined reservoir to synchronize with the
input’s dynamics. The resulting reservoir states now reflect the time
evolution of the input in the high-dimensional space. They are then
combined through a linear readout layer to produce predictions in
the measured space. Such architectures have been shown to excel
at forecasting chaotic systems. For a thorough overview of classi-
cal reservoir computing techniques, we refer to Luko$evi¢ius and
Jaeger.'

A. Reservoir computers

In a classical reservoir computer, the input time series x is
mapped randomly into a high-dimensional space of dimensional-
ity d through the input matrix W;,. Once the data are embedded,
the reservoir governs the internal dynamics of the reservoir com-
puter. The reservoir states are then linearly combined to form the
prediction.

The reservoir is a randomly connected graph of d nodes rep-
resented by its adjacency matrix A, which describes the connection
of the nodes with each other. Different topologies for the reservoir
A have been studied, showing that, generally, random networks or
small-world networks work better than scale-free networks."” The
reservoir is scaled to a target spectral radius of p* to regulate the
reservoir’s dynamical stability and ensure that it does not diverge.
At each time t, we represent the reservoir by the state vector r(#),
whose components reflect the activity of each node. Its evolution is
given by

r(t+1) = f(Ar(®) + Winx(®)), (5)

and it is usually initialized with the zero vector r(0) = 0. frefersto a
nonlinear function and the hyperbolic tangent is the usual choice.

After a synchronization phase, sometimes referred to as the
warm-up phase, the reservoir state r represents the dynamics of the
input data x in the high-dimensional space. The reservoir states can
then be linearly combined by an output matrix W, to reproduce
the time series in the original space.
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FIG. 1. The results of our grid search for the calculation of the largest Lyapunov exponent for different parameters of a and &; are shown. For this plot, all exponents of the
fractional Halvorsen system are the same and fixed at &;. White color inside the black boundary indicates a diverging trajectory for that parameter combination, while a white
color outside the boundary indicates that the parameter combination has not been explored. For each parameter combination, we simulate 50 000 steps and discard the first

10000 steps as transient behavior. In total, we performed 44 625 experiments.

For finding the output matrix W, the reservoir states r(t + 1)
with their corresponding output x(¢ + 1) are recorded during the
training process, collecting a total number of [ training steps. We
store the reservoir states and their corresponding outputs in the
matrices R and X, respectively, and perform a ridge regression” to
solve the equation W, R = X. The solution for the output matrix
is given by

W = XRT (RR" + 81) ", 6)
where we have applied the mathematical trick described by Lukose-
vic¢ius and Jaeger,' consisting of multiplying R to the right of the
problem to solve, in order to make the optimization independent of
the training length. Here, 1 describes the identity matrix and g the
regularization parameter of the ridge regression.

The reservoir states can also be generalized before the optimiza-
tion as already studied in different works.”*! In this work, we briefly
study the effects of generalizing the reservoir states to fractional
powers using 7 = (r 7.

For creating predictions after training, the reservoir computer
needs to be synchronized to the immediate history of the starting
point of the prediction to ensure that the reservoir state repre-
sents the current dynamics. After that, the predictions can be fed
successively into the reservoir computer to reproduce the learned
dynamics.

B. Minimal reservoir computers

Classical reservoir computers utilize random initializations,
rendering their study challenging since we must account for both
the chosen setup and the particular realization of the random num-
bers. To eliminate the element of randomness in reservoir comput-
ing, we introduced minimal reservoir computers'® as architectures

defined entirely without random components. This simplifies ana-
lyzing their inner workings, as the absence of random initializations
and network configurations allows for a more direct examination of
the reservoir’s dynamics.

Minimal reservoir computers can be seen as deterministic sub-
sets of classical reservoir computing approaches. In the following,
we outline their definition, but want to refer to Ref. 16 for a detailed
discussion.

The input data are not embedded randomly in a high-
dimensional space. Instead of creating random features from the
data, as done in classical RC, for minimal RC we construct the fea-
tures from the set of all subset sums of the coordinates. We use all
partial sums that are creatable by the coordinates and we feed mul-
tiple copies of each feature into the reservoir. The number of copies
fed into the reservoir is defined by the block size b and each copy is
assigned a weight in [0, 1] according to the weight vector w given by

3 =) 1 !
ﬂ_<1 b—1 Vo—1 0)’ 7

For a three-dimensional system, the input matrix Wj, is constructed
by

win = > (8)

RIoRIR oo
RIRIelRIeRIe

Chaos 35, 093105 (2025); doi: 10.1063/5.0272793
© Author(s) 2025

35, 093105-4

952120 G20 1890100 20


https://pubs.aip.org/aip/cha

Chaos

resulting in the following feature vector being fed into the reservoir,

T
wo x1+2+3) .

)

Wihx=(w0x wOx WO Xi42

Here, © describes the element-wise multiplication between the
two vectors, and for each feature f, the vector xf is defined as x5

= (xf -+ x)" to match the dimensionality of w. The subscript
indicates the coordinates out of which the feature is constructed by
summing over them.

Instead of using a single, big reservoir, the reservoir is con-
structed as several, disconnected, smaller reservoirs, which leads to
an adjacency matrix in block-diagonal form. For each feature f, we
use a small reservoir J; consisting of a matrix of ones, meaning that
each node is connected to every other node. The final reservoir is
then constructed by

Jy O .- 0
|0 Ty 0
A=" , 10
il (10)
0 0 IX1+2+3

where the scaling factor of % ensures that the reservoir A has the
spectral radius of p*. The idea of block-diagonal reservoirs has also
been successfully applied to classical RC architectures.'**

Unlike in classical RC architectures, in minimal RC the reser-
voir states are evolved purely linearly by

r(t+ 1) = Ar(t) + Winx(t). (11)

In the original definition, the nonlinearity is added after the evolu-
tion by extending the reservoir state to a generalized reservoir state
7 containing copies of itself raised up to a maximal power of Ny
given by

P=( 2 e pmet e (12)
The exponentiation is understood to be applied element-wise.
However, in this article, we want to introduce a slightly modi-
fied setup of the generalized states containing only the linear reser-
voir state and a single nonlinearity . The generalized reservoir state

7 reduces to
P=(r ). (13)

Additionally, we also want to allow for fractional nonlineari-
ties of the form 1 = %, where we apply the same substitution as in

Sec. 11 Bofrd = /1. Each operation is understood to be performed
element-wise and again we only allow even numerators # in order to
prevent complex-valued reservoir states.

Utilizing this reduced definition of minimal RCs, we can study
the dependence between the nonlinearity present in data and the
smallest nonlinearity required to successfully predict those systems.

The training and prediction routines are identical to the clas-
sical RC’s case. We train each minimal RC by performing a ridge
regression of the generalized reservoir states at each time point
against the corresponding output and create predictions by itera-
tively inputting the previous prediction.

ARTICLE pubs.aip.org/aip/cha

IV. SINDY

Sparse identification of nonlinear dynamics (SINDy)™ is a
method for identifying the underlying governing equations of a
dynamical system using a user-defined library. The measured tra-
jectory of a system is collected over a number of training steps in
a matrix X. Then, based on the library ©, a collection of candidate
terms O (X) is built. Iterative sparse regression is then applied on
this collection to identify the fewest terms that accurately represent
the system’s time derivative.

The library © is of key importance in the SINDy framework as
it describes all possible interactions and terms. Usually, it is built to
be as large as reasonable for allowing the optimizer to find all appro-
priate nonlinearities to accurately describe the system at hand. Typ-
ical choices of the library include polynomial terms up to a certain
degree, trigonometric functions, and exponential functions.”*

However, in this article, we want to use SINDy differently.
Instead of providing a large selection of nonlinearities, we only pro-
vide a single nonlinearity and study the performance on the recon-
struction. Additionally, we exclusively use fractional nonlinearities
n as defined for minimal RC.

In the notation of Brunton et al.,” we define our library for a
single nonlinearity 7 as

The terms for the fractional exponents X" are constructed as
follows. First, we define a global list of all possible nonlinearities
H C Z*. For a single nonlinearity n € H, we then use all possi-
ble terms for X", such that all possible permutations of coordinates,
which result in the target nonlinearity 5, are included. We sketch
this by

@
X" = 1_[ ¢;'sgn ¢;

cieC

Zai=n,aieH}, (15)

where P describes the power set and sgn the sign function.
We provide an illustration of this definition in Eq. (B2) in the
Appendix B.

We then solve the equation X = @(X)E for E to obtain the
weights for each term in the library. We optimize using the sequen-
tially thresholded least squares (STLSQ) algorithm™ and the param-
eter  describes the regularization strength of the optimization in
each iteration.

Ce fp({xl xn}) \ {Q}!

V. MINIMAL REQUIRED NONLINEARITY

In this section, we want to present our results and analyze the
connection between nonlinearities expressed in the data and the
required nonlinearities for reproducing those.
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A. Lorenz system

We begin our analysis with a wide grid search over all hyperpa-
rameters of minimal RCs in Fig. 2 for the Lorenz system. We want
to emphasize at this point that each tile in Fig. 2 completely and
uniquely describes a minimal reservoir computer instance. For min-
imal RCs, the repeated experiments for a certain setup solely average
out the effect of different training data or put differently, being on
different parts of the attractor. In contrast to classical RCs, where
repeated experiments are required to control for the randomness in
their construction in addition to different parts of the attractor being
used for training.

For the results in Fig. 2, we utilize the traditional setup of mini-
mal RC, where all integer exponents up to a maximal exponent 7,x
are used in the generalized reservoirs state 7. We observe that the
prediction is successful for a wide range of hyperparameters using
a minimal data setup of only 1000 training steps. Additionally, we
can report that the performance seems to increase when includ-
ing higher order nonlinearities. So, including higher nonlinearities,
which are not present in the data, seems to give the minimal RC
more flexibility and allow a more precise approximation. Increasing
the block size b leads to instabilities for higher order terms, which is
why we recommend using a relatively small block size not exceeding
b=5.

In our findings, we also confirm that nonlinearity is required
for predicting a nonlinear system, as demonstrated by the black
column for nym,x = 1 in Fig. 2. However, how much nonlinearity is
needed?

We analyze the transition from the first column of failing pre-
dictions (7max = 1) to the second column of successful predictions
(Mmax = 2) in more detail. For that we apply the new fractional reser-
voir states for minimal RCs, meaning that the generalized reservoir
states only contain two components: the linear one r and a single
nonlinear one ¢/7". We sweep the nonlinearity of the minimal RC
from n = 1 to n = 4 with a denominator of d = 50 in steps of two.
We use a block size of b = 3, aregularization parameter of § = 107°,
and iterate through each spectral radius from 10~ up to 0.5 includ-
ing 0. For each combination of RC exponent 7 and spectral radius
p*, we perform 20 realizations. We train each minimal RC on 1000
points and synchronize using 100 points. The results are presented
in Fig. 3, where we analyze the short- and long-term prediction. The
short-term prediction is measured using the forecast horizon, while
we define a long-term prediction as successful, if the reconstructed
Lyapunov exponent and the reconstructed correlation dimension do
not differ more than 0.1 from the original value.

For the short-term prediction, we clearly observe a peak, when
the nonlinearity in the data corresponds to the nonlinearity of the
minimal RC. We find this result to be stable for multiple hyperpa-
rameters. Interestingly, this strong connection does not hold for the
long-term prediction, where a reliable reconstruction of the attrac-
tor is possible even if the nonlinearity of the minimal RC exceeds
the nonlinearity of the data. Here, we discover the relationship to
be dependent on the spectral radius and observe that, in general, a
lower spectral radius allows for a bigger deviation of the exponent
of minimal RC against the exponent observed in data. This implies
that for an optimal short-term prediction, the exponent of the min-
imal RC needs to exactly match the exponent of the data, while for a
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reliable long-term prediction a certain, small overestimation of the
exponent in the data is allowed.

So far, we have only studied the Lorenz system, which con-
tains a single order, integer nonlinearity of two. However, we aim
to explore how general our results are, which is why we expand this
study on the fractional Halvorsen system with a controllable and
non-integer nonlinearity in Sec. V B.

B. Fractional Halvorsen with &, =§,=&;

In this section, we want to expand on the results of the Lorenz
system and study whether the peak at the exponent in the data
is due to an oddity of the Lorenz system and the power two, or
whether we can observe a more general pattern. Controlling the
total nonlinearity in the Lorenz system is a nontrivial task due to
the asymmetric equations and mixed nonlinearity, which is why we
use the fractional Halvorsen system in Egs. (2).

For this experiment, we set all exponents of the fractional
Halvorsen system to the same value of §; = & = &, = &; and test
numerators ranging from n; = 132 up to and including n; = 280
in steps of two with a denominator of d = 50 using a parameter
of a = 3.98. This corresponds to exponents ranging from &; = 2.64
to & = 5.6. The exponents for the minimal RCs are ranging from
n = 1.32 to & = 5.6 with the same denominator and step size. We
use a block size of b = 3, a spectral radius of p* = 1073, and a reg-
ularization parameter of 8 = 107°. We train each minimal RC on
5000 points, synchronize using 1000 points, and perform seven
runs per parameter combination. The findings for this experiment
are shown in Figs. 4 and 5.

We observe a clear peak at n = &;, indicating that hitting the
exact nonlinearity of the data is important for a successful predic-
tion. Interestingly, we note that even overshooting the nonlinearity
in the data will not generally improve the predictive power. The sin-
gle lines in Fig. 4 increasing after 1.5; are systems with a very low
Lyapunov exponent and, thus, easier to predict. The bulk of inter-
esting results lies before and around n = &;. Additionally, we want
to note the width of the peak in Fig. 4, which seems to be (roughly)
constant using a relative x-axis. This finding could be useful when
building a non-integer library in Sec. VI B, indicating that, for larger
exponents, a less precise guess in absolute terms is required for a
reasonable prediction performance than for smaller ones.

C. Fractional Halvorsen with &, =&, #&;

So far, we have only studied the fractional Halvorsen system
with all equal exponents. Due to the symmetry of the equations and
the equality of the exponents, the data only contained a single non-
linearity. Here, we want to systematically study the inclusion of two
different exponents.

For this case, we set §; = & = &, in Egs. (2) and set it to differ
from &;. For &), &, and 1, we use numerators ranging from n = 54
up to n = 280 in steps of two with a denominator of d = 50. This
corresponds to values from 7y, = 1.08 t0 Npyay = 5.6 for all expo-
nents. We use a parameter of a = 3.98. For each set of parameters,
we perform five experiments.

We show the results in Fig. 6. We order the values such that
& = min (§1,,&;) and correspondingly & = max (&,,&;). We do
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FIG. 2. The performance for different hyperparameters of minimal RCs in the classical setup, containing all nonlinearities in the generalized states up to nma predicting the
Lorenz system is shown. The performance of successful runs using the forecast horizon is measured in multiples of Lyapunov times. For each realization, we use 1000 data
points for training, out of which 10 are used for synchronization, and a step size of At = 0.025. Each tile shows the average performance of at least 35 realizations and in

total we performed 98 297 experiments.

this simplification since we find that the results do not change
depending on the ordering of the two exponents. For the sake of
readability, we define the relative distance between them as

Psaﬁb =&, +p & — &) . (16)

While we cannot find a quantitative pattern in Fig. 6, we can
make qualitative statements about this experiment. Looking at the
interval [9min, &, we find the previous pattern of the prediction per-
formance increasing until we hit the first nonlinearity of the data.
In the interval [&, & ] between the two nonlinearities of the data,
there is neither a clear pattern nor consistent peaks. The last interval
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Exponent of minimal RC n

FIG. 3. The short- and long-term performance of minimal RCs reproducing the
Lorenz system is presented. We performed 20 experiments per parameter com-
bination, with the upper plot reporting the mean and standard deviation of those
20 runs, while the lower one shows the fraction of successful reproductions. The
green line shows the true nonlinearity of the Lorenz system. We show the results
of 18 240 experiments.

[&1> max] sShows again a familiar pattern of the performance decreas-
ing when the exponent of the minimal RC gets larger than the
exponent present in the data. The interesting finding of this experi-
ment is the peaking of the prediction performance at & and &. The
prediction performance is best when one of the nonlinearities is hit.
Unexpectedly, the smallest one seems to be the most important one
providing the most contribution to a successful prediction.

This indicates that for mixed nonlinearities we do not observe
a significant improvement after including the smallest nonlinearity.
It seems that including the smallest nonlinearity is more important
than finding all of them. This is an important finding, since real-life
data cannot be expected to contain only a single nonlinearity, and
this finding hints that finding the smallest one is the most valuable
one regarding the prediction performance.

D. Fractional Halvorsen with &, #§&, #&;

In this section, we want to complete the analysis of the frac-
tional Halvorsen system by studying the case where all three expo-
nents differ from each other. A coordinated study, as performed in
Secs. V A-V C, is not feasible due to the huge number of possible
combinations. Instead, we randomly pick three numerators from 52
to 280 with the common denominator of 50 for the exponents &;
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— n=4&

Relative forecast horizon

0.0

056 ¢ 156 2¢,
Exponent 7 of minimal RC [multiples of exponent data &}

FIG. 4. The mean relative forecast horizon for different nonlinear exponents n
of minimal RCs predicting the fractional Halvorsen system is shown. Each gray
line represents the mean for a different &;. For each parameter and exponent,
we perform seven runs and calculate the mean forecast horizon, which we nor-
malize against the peak value. However, we omit the error bars in the interest of
readability. We show the results of 62 130 experiments.

and, if the trajectory is a valid chaotic system, we sweep the nonlin-
280

earity of the minimal RC from 9y, = % t0 Nmax = 5, In steps of
two in the numerator. The exponents are ordered by magnitude and
named & < &, < &. We want to test whether our qualitative result
of Sec. V C also holds for the case of three different exponents.

The results are presented in Fig. 7, where we can confirm the
pattern of Fig. 6, in which the error of the predicted correlation
dimension drops to zero as soon as the nonlinearity of our estima-
tor exceeds the smallest nonlinearity of the data. Due to the small
number of trajectories, other patterns are not qualitatively testable in
Fig. 7. Nevertheless, confirming the special situation of the smallest
nonlinearity present in data is an important finding.

VI. APPLICATIONS

From our findings, we identify two possible applications. The
first application consists of determining the smallest nonlinearity
present in the data, by sweeping the nonlinearity in the minimal
RC model and observing its output. For the second application, we
want to take the findings from minimal RC and apply them to tradi-
tional RC architectures by extending traditional RCs with fractional
nonlinearities.

A. Smallest nonlinearity in data

A possible application of this framework consists of discovering
the smallest nonlinearity present in data. We have shown previously
that the correlation dimension of the predicted values approaches
the correlation dimension of observed data for the first time if the
exponent of the minimal RC matches the smallest exponent present
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FIG. 5. This plot shows the absolute forecast horizon for different exponents &;
in data and 5 in the model. It uses the same underlying data of the fractional
Halvorsen system as setup in Fig. 4. Each tile shows the mean forecast horizon
of five realizations and the green line indicates n = &;.

in the data. We can use this observation to build a test for the
smallest exponent present in data.

For that, we first determine the correlation dimension of the
time series. We then sweep through a range of non-integer expo-
nents for the minimal RC. For each exponent, we calculate the
correlation dimension of the predicted time series. We repeat the
same for surrogate versions of the time series, in order to ensure that
the observed effect really stems from the nonlinearity of the data.
When the predicted correlation dimension matches the true one
and is outside the surrogates ones, we found an approximation for
the smallest nonlinearity present in data. If the measure of the time
series does not exceed the surrogate measure, the determination of
the smallest nonlinearity failed with this method.

We test our method on some chaotic systems with known
nonlinearity, some real-world data with unknown nonlinearity, and
present the results in Table T and Fig. 8(f). In Sec. VI A 1, we then
benchmark our results against classical RCs and SINDy.

The chaotic systems of choice are the Lorenz system, the clas-
sical Halvorsen system with & = 2, and the Thomas system. We
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FIG. 6. The prediction performance for predicting the fractional Halvorsen sys-
tem with two equal, fractional exponents is shown: & = &, # &;. We show the
mean relative forecast horizon for different nonlinear exponents of minimal RCs
in relative terms in the upper plot and the correlation dimension error in the lower
plot. We build this figure from 56 031 experiments resulting in 983 trajectories.

parameterize our minimal RCs with a block size of b = 3, a tar-
get spectral radius of p* = 0.1, and a regularization parameter of
B = 107°. We synchronize our model using 100 data points and
train it on 1000 data points. The nonlinearity exponent 7 is swept
from 22 to 22 in steps of two in the numerator. Figure 8 shows the
result for the Lorenz system and the Thomas system.

For the Lorenz system, we observe the predicted correlation
dimension to rise very quickly when the nonlinearity in the min-
imal RC model approaches two, the nonlinearity in the data. The
value for the correlation dimension differs significantly from the
surrogate background rendering our estimate of it confident. Inter-
estingly, for the Thomas system, the correlation dimension becomes
a computable number and instantly reaches the correlation dimen-
sion of the data for an exponent of 2.92, which is very close to 3.
The Thomas system has its nonlinearity in the sine function, and
an exponent of 3 constitutes the first nonlinear term of its Tay-
lor approximation. We note that the predicted correlation does not
stand out strongly from the linear surrogate background, as it does
for the Lorenz system. A possible explanation for this is that the
Thomas system contains only a small degree of nonlinearity. This
can be seen in its largest Lyapunov exponent of A &~ 0.01, which is
barely positive (compared to A = 0.9 for the Lorenz system). Addi-
tionally, the terms in the Taylor approximation of the sine function
scale with the factorial of the exponent, keeping the nonlinear effect
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FIG. 7. The prediction performance for predicting the fractional Halvorsen sys-
tem with three different fractional exponents is shown: &; £ &, # &;. We show
the absolute difference between the true correlation dimension and the predicted
correlation dimension in the upper plot. The lower plot shows the relative fore-
cast horizon for different nonlinear exponents of minimal RCs in relative terms.
We build the 564 trajectories from 32 148 experiments.
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apparently small. Nevertheless, it is interesting that the observed
smallest nonlinearity seems to correspond to the first nonlinear term
of the Taylor expansion. We have seen that for synthetic systems we
are able to coarsely determine the smallest nonlinearity present in
data making us confident to apply this method to real-world data.

For the financial data, we perform our test on three differ-
ent stock indices: the MSCI World Index tracking publicly traded
large- and mid-cap companies across the developed world; the S&P
500 Index tracking the 500 largest, publicly traded, U.S. companies;
and the STOXX Europe 600 Index covering 600 publicly traded,
European companies spanning from small- to large-cap. For each
index, we use the daily closing value starting from 1st March 2005
up to 31st January 2025 for calculating the daily return (percentage
change). This results in roughly 5 000 data points for each index. We
use the daily returns, since there is evidence that they are (weakly)
stationary’® making it appropriate for our setup. For each index, we
use the same parameterization for the minimal RCs consisting of
a block size of b =5, a spectral radius of p* = 0.99, and a regu-
larization parameter of 8 = 107°, and we use the first 500 steps as
synchronization steps.

The results are presented in Table I, where we can see that the
test was successful for each index and we are able to determine a
minimal nonlinearity for each. Here, we note that predicting the
stock indices was obviously unsuccessful. However, it seems that the
unsuccessful prediction was enough to capture the nonlinearity in
the data, as we observe a peak like in Fig. 9 for every index.

We find it difficult to put our findings into context, as compara-
ble studies exploring the smallest nonlinearity in financial data have
not yet been conducted. Therefore, our results should be viewed
as an exploratory proof-of-concept demonstration rather than con-
clusive evidence for the existence of underlying nonlinearities in
financial data. Given the well-known stochasticity of financial data®’
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FIG. 8. The correlation dimension of the predictions using the reduced minimal RC with one linearity against the surrogate background for the Lorenz and Thomas system is
shown. The black line and gray area represent the mean and one standard deviation of the correlation dimension when training the reduced minimal RC with FT surrogates.
The dashed colored line shows the real correlation dimension of the data. Each plot is the result of 6 375 optimizations.
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TABLE I. In the first part of this table, we show the real and predicted smallest
nonlinearity 1 for traditional chaotic systems. In the second part, we present the
reconstructed smallest nonlinearity of financial systems, and lastly we indicate a failed
reconstruction of climate data.

SYStem Mreal M minRC MSINDy
Lorenz 2 1.88 1.2

Classical Halvorsen 2 1.96 Failed
Thomas 3¢ 2.92 1.8

MSCI World Index n.a. 3.12 Failed
S&P 500 Index n.a. 1.64 Failed
STOXX Europe 600 Index n.a. 5.32 Failed
AMOC n.a. Failed Failed

*The Thomas system has a sine nonlinearity. Here, we consider the

. . . . 3
first nonlinear term of the Taylor expansion of the sine function, ’;—,,
as the smallest nonlinearity.

any attempt to infer the deterministic structure must be approached
with caution, as nonlinear effects identified by our method could
also be influenced by transient effects (e.g., market reactions to inter-
est rate cuts) or structural breaks (e.g., sudden regime shifts during
crises). Such events may lead to an overestimation of deterministic
structure. Nevertheless, we find the observed patterns compelling
and believe they warrant continued investigation into the role of
nonlinearity in financial markets.

Additionally, we note at this point that this proposed method
is not guaranteed to work for arbitrary datasets. It can happen, as it
did in our case for the Atlantic meridional overturning circulation
(AMOC) dataset,” that the reconstruction fails. The reconstructed
correlation dimension does not exceed the surrogate background
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(52/50) (100/50) (150/50) (200/50) (250/50)  (300/50)
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FIG.9. The correlation dimension of the predictions of the MSCI World Index data
using the reduced minimal RC model is shown. The black line with the gray area
shows the mean and one standard deviation of the surrogate background. The
dashed line represents the real correlation dimension of the MSCI World Index
returns. This figure is a result of 6 375 experiments.

ARTICLE pubs.aip.org/aip/cha

and does not meet the correlation dimension measured in the
dataset. However, this does not imply that the dataset does not con-
tain any nonlinearity. Instead, it simply means that our method is
not able to detect any nonlinearity. In the case of the AMOC data,
it may simply be due to the fact that not enough training data were
available as the AMOC time series is considerably shorter than that
of the financial data. Further, in-depth analyses are required to iden-
tify the necessary prerequisites for the method to work for real data.
Nevertheless, the results on financial data already point to the fasci-
nating possibility of being able to derive the degree of nonlinearity
of the underlying process for a real dataset.

To estimate the smallest nonlinearity present in a dataset, we
recommend the following procedure to practitioners: First, identify
a suitable parametrization of the full minimal reservoir computer
that reliably models the system, using techniques like Bayesian
optimization if needed. Next, define a list of candidate fractional
nonlinearities with a resolution adapted to the available computa-
tional resources. Finally, apply the reduced minimal RC framework
with a single nonlinearity across this list to both the original data and
its surrogate versions. The first performance peak, where the model
outperforms surrogates, can then be interpreted as an estimate of the
smallest nonlinearity in the data.

1. Results of comparable methods

Minimal RCs, as a subset of classical RCs, are conceptually very
similar to SINDy models, as both use a library to construct nonlin-
ear features from data. For this reason, we benchmark our results
against classical RCs and SINDy.

a. Classical reservoir computers. For classical RCs, we use the
same approach as for minimal RCs, employing fractionally expo-
nentiated, generalized reservoir states. We use two different reser-
voir sizes in our experiments: a small network with d = 100 nodes
and a large network with d = 1100 nodes. For each setup, we use
random networks created by the Erdés-Rényi algorithm™ and use a
target spectral radius of p* = 0.2. We synchronize the reservoir to
the data using 1000 data points and train on 4000 steps perform-
ing a ridge regression with a regularization parameter of g = 107*.
We use fractions ranging from = to %2 in steps of = as fractional
exponents for the additional nonlinearity.

Using this setup, we were not able to reconstruct the small-
est nonlinearity of the Lorenz system. In line with the results
from Herteux and Rith’® and our later results in Sec. VI B, we
note an improved performance when introducing generalized reser-
voir states. However, the increase is independent of the amount
of nonlinearity making it impossible to reconstruct the underlying
nonlinearity.

b. SINDy. We use our fractional library to study whether we
can reconstruct the smallest nonlinearity using SINDy. We use the
global nonlinearities H = {0, 2, ., 39} and use each n € H to
construct a nonlinear library with a single nonlinearity. Due to the
comparatively large library, we employ a relatively large parameter
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B. Smart non-integer library

For the second application, we want to transfer our findings
discovered for minimal RCs to the traditional RC architecture.
While generalizing reservoir states is not a new idea,””’" we propose

50 extending this idea with fractional powers. We have seen that min-

0 imal RCs work best, when the generalized reservoir state contains

— n the nonlinearity present in the data. For this reason, we propose

; % 50 including fractional powers of the reservoir states in minimal RC. To

! ¥ 0 determine the number of powers to include, we revert to our results

@ from Sec. V B in Fig. 4. Inspired by the full width at half maximum

& 50 metric commonly used in optics, we calculate the full width at 75%
0 from the peak performance in Fig. 4. While we only used a parame-

ter of a = 3.98 for Fig. 4, we extend the study for Fig. 11 to include

~ Lorenz parameters of a = 1.58 and a = 1.80, in order to get a feeling for
40 . _ —40 the width at lower powers. The results are shown in Fig. 11, where
minRC 7 = 1.88 (94/50) —20 we see the width for 75% of the peak performance staying constant
=== SINDy n = 1.2 (60/50) 0 across all exponents and different parameters, indicating faintly that
. % . .

- ~ 20 /(&1.} this resglt may be g@nerahzable. _
Ay, 20 40 y With this finding, we can choose fractional exponents whose
S 60 width will cover the whole space between two integers. One possible

realization of these exponents can be constructed with

FIG. 10. We show the classical Lorenz attractor on top in black. For minimal RC
and SINDy, we show the reconstructed Lorenz attractor with the minimal working
nonlinearity, namely, a nonlinearity of = 1.88 for minimal RC in the middle in red
and a nonlinearity of 1.2 for SINDy on the bottom in blue. The setup of the models
is as described in the text. For visualization purposes, we separate the attractors
in the phase space across the z-axis. We show 20 trajectories per model, each
with a random initial condition consisting of a random integer between —20 and
20 in each coordinate.

17)

- 54 66 78 90 T
Ty =\t r50 r5 5 r50 2

Here, the subscript [1, 2] indicates that the fractions simply repre-
sent the spacing between the integer powers 1 and 2, and this idea
can be generalized up to an arbitrary integer power. In later appli-
cations, we extend them to span up to an integer power of 3. We
find our results to be robust against the exact choice of fractional
powers. While we acknowledge this being a rather rudimentary

value of @ = 10 to enforce sparsity. We train each SINDy model on
5000 time steps.

The results are shown in Table I, where we can see that the
reconstruction fails for the real-world datasets. However, for the
synthetic systems, we find rather interesting results. For the Lorenz
system, we find that a nonlinearity of & is sufficient to reproduce
a slightly “wobblier” version of the attractor which, nevertheless,
has the correct correlation dimension. As in our previous work,"
we again find different sets of differential equations that produce
a chaotic, butterfly-shaped attractor—this time even with different
nonlinear terms as compared with the original set of the Lorenz
equations. They are obviously not the only ones that produce this
very butterfly shaped attractor.

In Fig. 10, we show a comparison of the three different
attractors: the real one, the one reconstructed with minimal RC, 2 3 4 5
and lastly the one reconstructed with SINDy. All three show the (100/50) (150/50) (200/50) (50/20)
same butterfly-like shape and are visually virtually indistinguishable.
However, they all rely on vastly different amounts of nonlinearity.

It seems that SINDy is more stable than minimal RC and
requires way less nonlinearity than present in data to successfully
approximate a trajectory. While an interesting result, especially the
alternative descriptions of the chaotic systems, we find it to be not
suited for discovering the smallest “true” nonlinearity present in
data.

a=1.58 kal

— a=1.80 -
a=3.98 —_—

5 (250/50)

4 (200/50)

Exponent &; of data

3 (150/50) q

|I|
||I
J
|

2 (100/50)

Exponent 7 of minimal RC within 75 % of peak performance

FIG. 11. For each exponent &; of the fractional Halvorsen system, we show
the range of exponents for minimal RCs, where the relative forecast horizon
lies between 75% of their maximal value. For this plot, we compiled three dif-
ferent parameters a of the fractional Halvorsen system. The gray line indicates
the identity where n = &;. We compile the results of a total of 86 070 separate
experiments.
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FIG. 12. We show the prediction performance for three different RCs: Green rep-
resents the small reservoir, red the small reservoir with fractional reservoir states,
and blue the large reservoir. For each RC, we performed 1 000 experiments and
show the distribution of the forecast horizons, and the mean with one standard
deviation below.

approach with room to improvement for finding the optimal frac-
tional powers, we find this approach sufficient for the scope of this
work.

We want to test whether the findings for minimal RCs can be
transferred to work on traditional RCs. We perform this test by pre-
dicting the Lorenz system using three different architectures. First,
we use a RC with a dimensionality of d = 100. The new architecture
also uses a dimensionality of d = 100 but generalizes the reservoir
states r to 7 by including fractional powers of the reservoir state up
to a power of 3 with the spacing of Eq. (17). However, since includ-
ing these additional powers increases the size of the output matrix by
a factor of 10, we need to test our proposed change against a reser-
voir resulting in the same sized output matrix. This results in a third
RC model with a dimensionality of d = 1100. For all three models,
we use the same hyperparameters: a spectral radius of p* = 0.2 on
a random network and a regularization parameter of 8 = 107*. We
train all models on 4 000 data points and use 1000 data points for
the synchronization phase.

While we see in Fig. 12 that the small reservoir with fractional
reservoir states performs worse than the large reservoir, it easily out-
performs the standard small reservoir. Therefore, we can improve
the performance of small reservoirs by generalizing their reservoir
states to include fractional powers. This approach can be used to
enhance the performance of physical RC implementations in sit-
uations where increasing the reservoir size is not feasible due to
constraints in the hardware fabrication process, such as the limited
number of neurons available on neuromorphic chips or increasing
production costs associated with larger physical reservoirs."’

For practitioners, we note that the exact choice of fractional
exponents is not critical. Instead, what matters most for small reser-
voirs is the presence of fractional nonlinearities, not their precise
values. The proposed spacing in Eq. (17) offers a practical template
that balances expressiveness and complexity. Importantly, the num-
ber of fractional terms included should be adapted to the size of
the available training data, as too many features can lead to overfit-
ting. This fractional augmentation offers a computationally efficient
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way to enhance prediction quality in resource-constrained settings
without increasing reservoir size.

VIl. CONCLUSION

In this work, we systematically explored the relationship
between the nonlinearities in input data and those introduced in
RC models. Building on the minimal RC framework, we proposed a
tailored architecture with a single, tunable nonlinearity parameter,
allowing us to isolate and precisely control the degree of nonlin-
earity in the model. Using a novel fractional Halvorsen system, we
generated chaotic datasets with an adjustable nonlinear structure
and evaluated the prediction performance across a wide range of
reservoir states nonlinearities.

While we restricted ourselves to even numerators to avoid
imaginary-valued reservoir states, the idea of studying imaginary
reservoir states presents a compelling direction for future research.

Through extensive experiments, we found that short-term fore-
casting performance is maximized when the nonlinearity in the
minimal RC model matches the nonlinearity of the input data. In
other words, the best predictions occur at a tuned “nonlinearity
match” between data and model, whereas mismatches, by using a
model that is too linear or too nonlinear relative to the data, consis-
tently degrade performance. This confirms our core hypothesis and
directly demonstrates that optimally tailored reservoir states yield
superior results.

Our work strongly corroborates the “Catch-22"** described by
Zhang and Cornelius." Specifically, their results show that NGRCs
perform well only when the exact governing terms of the system are
known; but if those are known, there is no need for a machine learn-
ing model. We observe the same pattern using minimal RCs. The
best performance is achieved when the nonlinearity of the model
matches the nonlinearity of the data. This represents a limitation of
such models and emphasizes the importance of developing reliable
methods for inferring the underlying system structure directly from
data. Conversely, these results support the idea that the success of
classical RCs lies in their ample spectrum of nonlinearities.

However, importantly, we also observed that for systems with
multiple nonlinearities, it is often the smallest nonlinearity in the
data that dominates prediction performance. This insight enables
us to use our framework in reverse: By sweeping through model
nonlinearities and observing the resulting performance, we were
able to estimate the minimal nonlinearity present in a given time
series. While we were not able to observe effectiveness across all
datasets studied, applying this method to both synthetic and real-
world financial data demonstrated its practical value in uncovering
underlying nonlinear structures.

Interestingly, when applying SINDy with a restricted frac-
tional library, we were able to identify governing equations that
reproduce the characteristic butterfly-shaped Lorenz attractor using
nonlinearities significantly smaller than two, suggesting that simpler
functional forms can approximate complex dynamics under certain
conditions.

Finally, we transferred our findings to classical RC architec-
tures and demonstrated that incorporating fractional, generalized
reservoir states leads to an improvement in predictive performance.
This has direct implications for physical RC platforms, where
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increasing the number of reservoir nodes may not be feasible due
to hardware or economic constraints. By enhancing the expres-
siveness of the reservoir through non-integer polynomial transfor-
mations—rather than scaling the system size—we enable a more
compact yet powerful representation of the input dynamics. This
approach offers a structured way to increase the abilities of physical
reservoirs without increasing their structural complexity, making it
a viable strategy for high-performance prediction in embedded or
resource-constrained environments.

Our work offers both a theoretical and practical step forward
in understanding and designing reservoir computers that are better
aligned with the complexity of the data they aim to model.
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APPENDIX A: METRICS

Here, we want to define the methods used for quantifying the
quality of a prediction. As in similar work, we use the forecast hori-
zon to quantify the short-term prediction power. The so-called long-
term “climate” of an attractor is measured by the largest Lyapunov
exponent in combination with the correlation dimension.

1. Largest Lyapunhov exponent

The Lyapunov exponent formalizes the concept of sensitive
dependence on initial conditions of chaotic systems. Defining the
distance § between two nearby points x and x + &, experimentally
an exponential increase of this distance § can be observed for chaotic
systems modeled by

8(t) = §(0) exp AL. (A1)

Here, A describes the largest Lyapunov exponent and is a measure of
how fast two nearby trajectories diverge.

ARTICLE pubs.aip.org/aip/cha

We calculate the largest Lyapunov exponent from the data
using the algorithm introduced by Rosenstein et al.** For this, we
track the evolution of initially close points in phase space by identi-
fying nearest neighbors in the time series and measuring the average
logarithmic divergence over time. The slope of this divergence com-
puted over a selected time interval yields an estimate of the maximal
Lyapunov exponent. To ensure valid comparisons, pairs of points
are filtered to avoid temporal proximity and to allow sufficient
forecast length.

Using the largest Lyapunov exponent A, a Lyapunov time T,
:= A~! can be defined, representing the characteristic time scale over
which trajectories in phase space remain close. This quantity acts
as a natural reference time scale for analyzing and contrasting the
dynamics of various systems.

2. Correlation dimension

The correlation dimension is a widely used measure to esti-
mate the fractal dimensionality of strange attractors and provides
insight into the geometric complexity of a system’s long-term behav-
ior. It is based on the idea of quantifying how the number of point
pairs within a certain distance r scales with r itself. The correlation
sum C(r) is defined as the fraction of pairs whose mutual distance is
smaller than r by

1
e = lim = > O(r—lx(t) —x®)). (A

t1#t

Here, © is the Heaviside step function returning one when the
distance is smaller than r and zero when the distance is
larger than r.

Experimentally, it has been discovered that for self-similar,
strange attractors the power law

Cwr) ~ 1 (A3)

holds over a range of r. To define a meaningful range of radii, we
compute the lower and upper bounds as the 5th and 95th percentiles
of all pairwise distances, respectively. This ensures that the correla-
tion sum is evaluated over a scale that captures the system’s spatial
structure.

The scaling factor of the power law C is the correlation dimen-
sion and describes how densely the points fill space as the scale r
decreases.

We calculate the correlation dimension using the algorithm by
Grassberger and Procaccia® by embedding the time series in phase
space and estimating how the number of point pairs within a radius
r scales with r. To do this efficiently, we organize the data using a
binary space-partitioning data structure that stores the points in a
k-dimensional space.” Using this structure, we compute the cor-
relation sum C(r) over a range of radii r. The slope of the double
logarithmic graph of C(r) over r yields the correlation dimension C.

3. Forecast horizon

For quantifying the short-term prediction, we use the forecast
horizon as a measure that describes the time for which the error
between the true trajectory x and the predicted trajectory x,,.4 is
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smaller than a threshold A in each coordinate. For each coordi-
nate, we calculate the maximal time the error is below the threshold
with

v = argmax, {|x(t) — xiprea(®d| < A} (A4)

The argmax function is applied element-wise. We use the stan-
dard deviation o, applied element-wise as the threshold A with
A=0(x)

The forecast horizon v is then defined as the minimal time
across all coordinates during which the prediction error stays below

the threshold by
vy = minw. (A5)

In order to compare the forecast horizon across different sys-
tems, we define it in multiples of Lyapunov times as

v

V= — = VA, (A6)
Ty
|
80 10, 70 0, 60
% aso  gsbso g3 b0
X550 =

Here, we use the variable names a, b, and c instead of x, x;, and x; to
visualize that all possible combinations are considered. a*! b*2 repre-
sents x;' x)2, 71 202, x5 452, 151 %02, %11 %52, and finally x5" x)2. This is
repeated analogously for single terms a*! and terms containing three
factors a® b*2¢*3. We omit the time dependence of the variables in
our notation and imply temporal evolution through the progression
of the rows as done in the original work.*

Using this method, the number of possible combinations of
nonlinear terms can quickly become very large depending on the
spacing within the global nonlinearities H. In our work, we find a
spacing of £ to be an appropriate trade-off between granularity of
the nonlinearities and size of the library. However, this method is
only meant to be a proof of concept. Further in-depth studies may
be required to find the optimal setup.

REFERENCES

TH. Jaeger, “The ‘echo state’ approach to analysing and training recurrent neural
networks—With an Erratum note,” Technical Report, GMD Forschungszentrum
Informationstechnik, 2001.

2W. Maass, T. Natschliger, and H. Markram, “Real-time computing without sta-
ble states: A new framework for neural computation based on perturbations,”
Neural Comput. 14, 2531-2560 (2002).

3H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication,” Science 304, 78-80 (2004).

“M. Lukogevitius and H. Jaeger, “Reservoir computing approaches to recurrent
neural network training,” Comput. Sci. Rev. 3, 127-149 (2009).

5]. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, “Using machine learning to
replicate chaotic attractors and calculate Lyapunov exponents from data,” Chaos
27, 121102 (2017).

7. Lu, B. R. Hunt, and E. Ott, “Attractor reconstruction by machine learning,”
Chaos 28, 061104 (2018).

7S. Shahi, C. D. Marcotte, C. J. Herndon, F. H. Fenton, Y. Shiferaw, and E.
M. Cherry, “Long-time prediction of arrhythmic cardiac action potentials using

40 , 40 10,10 60
as0bs0  g50 h50 ¢50

ARTICLE pubs.aip.org/aip/cha

APPENDIX B: ILLUSTRATION OF OUR SINDY LIBRARY

In the SINDy framework, the library of all possible nonlineari-
ties is of key importance as it constrains the dynamics of the system
to certain terms. Here, we want to illustrate our definition of the
library with a concrete example. We present our definition using
the same configuration as in our experiments. Namely, we use a
global list of all possible nonlinearities constructed as fractions with
a denominator of 50 and the numerator ranging from 10 to 300 in

steps of 10 as
10 20 300
H={—,—,...,—1¢. (B1)
50 50 50
For a nonlinearity 1, we then use all combinations of terms that can

be built from H and result in that nonlinearity. For example, for n =

%, the library will contain the nonlinear terms given by

(B2)

recurrent neural networks and reservoir computing,” Front. Physiol. 12, 734178
(2021).

8K. Brucke, S. Schmitz, D. Kéglmayr, S. Baur, C. Rith, E. Ansari, and P. Klement,
“Benchmarking reservoir computing for residential energy demand forecasting,”
Energy Build. 314, 114236 (2024).

9. Herteux, C. Rith, G. Martini, A. Baha, K. Koupparis, I. Lauzana, and D. Pio-
vani, “Forecasting trends in food security with real time data,” Commun. Earth
Environ. 5,611 (2024).

10X. Li, Q. Zhu, C. Zhao, X. Duan, B. Zhao, X. Zhang, H. Ma, J. Sun, and W. Lin,
“Higher-order Granger reservoir computing: Simultaneously achieving scalable
complex structures inference and accurate dynamics prediction,” Nat. Commun.
15, 2506 (2024).

T'M. Mijalkov, L. Storm, B. Zufiria-Gerbolés, D. Veréb, Z. Xu, A. Canal-Garcia,
J. Sun, Y.-W. Chang, H. Zhao, E. Gémez-Ruiz, M. Passaretti, S. Garcia-Ptacek,
M. Kivipelto, P. Svenningsson, H. Zetterberg, H. Jacobs, K. Liidge, D. Brunner,
B. Mehlig, G. Volpe, and J. B. Pereira, “Computational memory capacity predicts
aging and cognitive decline,” Nat. Commun. 16, 2748 (2025).

12T L. Carroll and L. M. Pecora, “Network structure effects in reservoir comput-
ers,” Chaos 29, 083130 (2019).

13 A. Haluszczynski and C. Rith, “Good and bad predictions: Assessing and
improving the replication of chaotic attractors by means of reservoir computing,”
Chaos 29, 103143 (2019).

14D. J. Gauthier, E. Bollt, A. Griffith, and W. A. S. Barbosa, “Next generation
reservoir computing,” Nat. Commun. 12, 5564 (2021).

T5W. A.S. Barbosa and D. J. Gauthier, “Learning spatiotemporal chaos using next-
generation reservoir computing,” Chaos 32, 093137 (2022).

T6H. Ma, D. Prosperino, and C. Rith, “A novel approach to minimal reservoir
computing,” Sci. Rep. 13, 12970 (2023).

17R. Thomas, “Deterministic chaos seen in terms of feeedback circuits: Analysis,
synthesis: “Labyrinth chaos”,” Int. J. Bifurcation Chaos 9, 1889-1905 (1999).

18E. N. Lorenz, “Deterministic nonperiodic flow,” JAS 20, 130-141 (1963).

19]. C. Sprott, Elegant Chaos (World Scientific Publishing, 2010).

20J, R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,”
J. Comput. Appl. Math. 6, 19-26 (1980).

21S. Baur, T. Nakano, D. Duncan, F. Fischbach, A. Haluszczynski, M.
Klatt, D. Koglmayr, H. Ma, D. Prosperino, and C. Rith, “SCAN: A

Chaos 35, 093105 (2025); doi: 10.1063/5.0272793

© Author(s) 2025

35, 093105-15

952120 G20 1890100 20


https://pubs.aip.org/aip/cha
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.5039508
https://doi.org/10.3389/fphys.2021.734178
https://doi.org/10.1016/j.enbuild.2024.114236
https://doi.org/10.1038/s43247-024-01698-9
https://doi.org/10.1038/s41467-024-46852-1
https://doi.org/10.1038/s41467-025-57995-0
https://doi.org/10.1063/1.5097686
https://doi.org/10.1063/1.5118725
https://doi.org/10.1038/s41467-021-25801-2
https://doi.org/10.1063/5.0098707
https://doi.org/10.1038/s41598-023-39886-w
https://doi.org/10.1142/S0218127499001383
https://doi.org/10.1016/0771-050X(80)90013-3

Chaos

versatile implementation of reservoir computing methods,” (unpublished)
https://github.com/DLR-KI/scan.

228, M. de Silva, K. Champion, M. Quade, J.-C. Loiseau, J. N. Kutz, and S. L.
Brunton, “PySINDy: A Python package for the sparse identification of nonlinear
dynamical systems from data,” ]. Open Source Softw. 5, 2104 (2020).

Z5A. A. Kaptanoglu, B. M. de Silva, U. Fasel, K. Kaheman, A. J. Goldschmidt, J.
Callaham, C. B. Delahunt, Z. G. Nicolaou, K. Champion, J.-C. Loiseau, J. N. Kutz,
and S. L. Brunton, “PySINDy: A comprehensive Python package for robust sparse
system identification,” J. Open Source Softw. 7, 3994 (2022).

24H. Ma, A. Haluszczynski, D. Prosperino, and C. Rith, “Identifying causality
drivers and deriving governing equations of nonlinear complex systems,” Chaos
32, 103128 (2022).

25]. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. Doyne Farmer, “Test-
ing for nonlinearity in time series: The method of surrogate data,” Physica D 58,
77-94 (1992).

26C. Rith, M. Gliozzi, I. E. Papadakis, and W. Brinkmann, “Revisiting algorithms
for generating surrogate time series,” Phys. Rev. Lett. 109, 144101 (2012).

271, Laut and C. Rith, “Surrogate-assisted network analysis of nonlinear time
series,” Chaos 26, 103108 (2016).

28K Schreiber, H. I. Modest, and C. Rith, “Phase walk analysis of leptokurtic time
series,” Chaos 28, 063120 (2018).

29A. E. Hoerl and R. W. Kennard, “Ridge regression: Applications to nonorthog-
onal problems,” Technometrics 12, 69-82 (1970).

30]. Herteux and C. Rith, “Breaking symmetries of the reservoir equations in echo
state networks,” Chaos 30, 123142 (2020).

3T A. Ohkubo and M. Inubushi, “Reservoir computing with generalized readout
based on generalized synchronization,” Sci. Rep. 14, 30918 (2024).

32H. Ma, D. Prosperino, A. Haluszczynski, and C. Rith, “Efficient forecasting of
chaotic systems with block-diagonal and binary reservoir computing,” Chaos 33,
063130 (2023).

335, L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations
from data by sparse identification of nonlinear dynamical systems,” PNAS 113,
3932-3937 (2016).

ARTICLE pubs.aip.org/aip/cha

34B. Bhadriraju, M. S. F. Bangi, A. Narasingam, and J. S.-I. Kwon, “Operable adap-
tive sparse identification of systems: Application to chemical processes,” AIChE J.
66, €16980 (2020).

35F. Paparazzo, A. Castoldi, M. L. 1. S. Imran, S. Arrigoni, and F. Braghin,
“Learning-based MPC leveraging SINDy for vehicle dynamics estimation,”
Electronics 14, 1935 (2025).

36R. Cont, “Empirical properties of asset returns: Stylized facts and statistical
issues,” Quant. Finance 1, 223-236 (2001).

37E. F. Fama, “The behavior of stock-market prices,” |. Bus. 38, 34-105 (1965).
38p. Ditlevsen and S. Ditlevsen, “Warning of a forthcoming collapse of the
Atlantic meridional overturning circulation,” Nat. Commun. 14, 4254 (2023).
39P. Erdds and A. Rényi, “On the evolution of random graphs,” Publ. Math. Inst.
Hung. Acad. Sci 5, 17-61 (1960).

“OD. Prosperino, H. Ma, and C. Rith, “A generalized method for estimating
parameters of chaotic systems using synchronization with modern optimizers,”
J. Phys. Complex. 6,015012 (2025).

41S. Stepney, “Physical reservoir computing: A tutorial,” Nat. Comput. 23,
665-685 (2024).

42To fully appreciate the depth of this term, we wholeheartedly recommend the
novel “Catch-22” by Joseph Heller.

43Y. Zhang and S. P. Cornelius, “Catch-22s of reservoir computing,” Phys. Rev.
Res. 5, 033213 (2023).

44M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for calcu-
lating largest Lyapunov exponents from small data sets,” Physica D 65, 117-134
(1993).

45P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attrac-
tors,” Physica D 9, 189-208 (1983).

463, Maneewongvatana and D. M. Mount, “Analysis of approximate nearest
neighbor searching with clustered point sets,” in Data Structures, Near Neighbor
Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges,
edited by M. H. Goldwasser, D. S. Johnson, and C. C. McGeoch, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science (American
Mathematical Society, 2002), Vol. 59, pp. 105-123.

Chaos 35, 093105 (2025); doi: 10.1063/5.0272793
© Author(s) 2025

35, 093105-16

952120 G20 1890100 20


https://pubs.aip.org/aip/cha
https://github.com/DLR-KI/scan
https://doi.org/10.21105/joss.02104
https://doi.org/10.21105/joss.03994
https://doi.org/10.1063/5.0102250
https://doi.org/10.1016/0167-2789(92)90102-S
https://doi.org/10.1103/PhysRevLett.109.144101
https://doi.org/10.1063/1.4964646
https://doi.org/10.1063/1.5018301
https://doi.org/10.1080/00401706.1970.10488635
https://doi.org/10.1063/5.0028993
https://doi.org/10.1038/s41598-024-81880-3
https://doi.org/10.1063/5.0151290
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1002/aic.16980
https://doi.org/10.3390/electronics14101935
https://doi.org/10.1080/713665670
https://doi.org/10.1086/294743
https://doi.org/10.1038/s41467-023-39810-w
https://doi.org/10.1088/2632-072X/adaa46
https://doi.org/10.1007/s11047-024-09997-y
https://doi.org/10.1103/PhysRevResearch.5.033213
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/0167-2789(83)90298-1

