elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Rate-distortion trade-off for learned semantic compression for remote sensing platforms

Chaukair, Mustafa und Bhattacharjee, Protim und Jung, Peter (2025) Rate-distortion trade-off for learned semantic compression for remote sensing platforms. SPIE Senosrs + Imaging 2025, Artificial Intelligence and Image and Signal Processing for Remote Sensing XXXI, 2025-09-15 - 2025-09-18, Madrid, Spain. doi: 10.1117/12.3070101.

[img] PDF
844kB

Kurzfassung

Remote sensing platforms such as satellites, UAVs, and HAPs generate massive volumes of imagery data, leading to a downlink bottleneck. On top of that, transmission of data is often restricted to certain time-intervals with limited bandwidth, making the downlink process even for compressed image data to a long-term obstacle. Deep learning-based approaches like learned semantic compression, enable the extraction and transmission of representative features instead of raw imagery, thus reducing data volume downlink time. In this work, we extend learned semantic compression pipelines to multispectral images and further include learned efficient quantization. The proposed pipeline integrates four components: a linear compressor, quantization, unrolled reconstruction network, and downstream semantic task. End-to-end training with semantic loss ensures that compression is aligned with the performance of tasks such as classification. We study the trade-offs among bit rate and downstream task accuracy and experiments on Earth observation applications demonstrate the effectiveness of the approach for land use and land cover classification. thus reducing data volume downlink time. In this work, we extend learned semantic compression pipelines to multispectral images and further include learned efficient quantization. The proposed pipeline integrates four components: a linear compressor, quantization, unrolled reconstruction network, and downstream semantic task. End-to-end training with semantic loss ensures that com- pression is aligned with the performance of tasks such as classification. We study the trade-offs among bit rate and downstream task accuracy and experiments on Earth observation applications demonstrate the effectiveness of the approach for land use and land cover classification.

elib-URL des Eintrags:https://elib.dlr.de/217046/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Rate-distortion trade-off for learned semantic compression for remote sensing platforms
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Chaukair, Mustafamustafa.chaukair (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bhattacharjee, Protimprotim.bhattacharjee (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jung, Peterpeter.jung (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Oktober 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1117/12.3070101
Status:veröffentlicht
Stichwörter:Source coding, onboard compression, compressed learning, distribution learning
Veranstaltungstitel:SPIE Senosrs + Imaging 2025, Artificial Intelligence and Image and Signal Processing for Remote Sensing XXXI
Veranstaltungsort:Madrid, Spain
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:15 September 2025
Veranstaltungsende:18 September 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt | Stellar Apps | Stellar Apps: On-board Application Framework for Space Missions [EO]
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Optische Sensorsysteme > Echtzeit-Datenprozessierung
Hinterlegt von: Bhattacharjee, Protim
Hinterlegt am:15 Dez 2025 11:27
Letzte Änderung:15 Dez 2025 11:27

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.