Tian, Changhao und Wang, Annan und Fan, Han und Wiedemann, Thomas und Luo, Yifei und Yang, Le und Lin, Weisi und Lilienthal, Achim und Chen, Xiaodong (2025) Deep Learning Based Topography Aware Gas Source Localization with Mobile Robot. In: 2025 IEEE International Conference on Robotics and Automation, ICRA 2025. 2025 IEEE International Conference on Robotics and Automation (ICRA), 2025-05-19 - 2025-05-23, Atlanta, GA, USA. doi: 10.1109/ICRA55743.2025.11128134. ISBN 979-833154139-2. ISSN 1050-4729.
|
PDF
- Nur DLR-intern zugänglich
3MB |
Kurzfassung
Gas source localization in complex environments is critical for applications such as environmental monitoring, industrial safety, and disaster response. Traditional methods often struggle with the challenges posed by a lack of environmental topography integration, especially when interactions between wind and obstacles distort gas dispersion patterns. In this paper, we propose a deep learning-based approach, which leverages spatial context and environmental mapping to enhance gas source localization. By integrating Simultaneous Localization and Mapping (SLAM) with a U-Net-based model, our method predicts the likelihood of gas source locations by analyzing gas sensor data, wind flow, and topography of the environment represented by a 2D occupancy map. We demonstrate the efficacy of our approach using a wheeled robot equipped with a photoionization detector, a LIDAR, and an anemometer, in various scenarios with dynamic wind fields and multiple obstacles. The results show that our approach can robustly locate gas sources, even in challenging environments with fluctuating wind directions, outperforming conventional methods by utilizing topography contextual information. This study underscores the importance of topographical context in gas source localization and offers a flexible and robust solution for real-world applications. Data and code are publicly available.
| elib-URL des Eintrags: | https://elib.dlr.de/216949/ | ||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||||||||||
| Titel: | Deep Learning Based Topography Aware Gas Source Localization with Mobile Robot | ||||||||||||||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||||||||||||||
| Datum: | Mai 2025 | ||||||||||||||||||||||||||||||||||||||||
| Erschienen in: | 2025 IEEE International Conference on Robotics and Automation, ICRA 2025 | ||||||||||||||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||||||
| DOI: | 10.1109/ICRA55743.2025.11128134 | ||||||||||||||||||||||||||||||||||||||||
| ISSN: | 1050-4729 | ||||||||||||||||||||||||||||||||||||||||
| ISBN: | 979-833154139-2 | ||||||||||||||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||
| Stichwörter: | Gas Source Localization, Robot Olfaction, Machine Olfaction, Cognitive Robotics, Deep Learning, Simultaneous Localization and Mapping (SLAM) | ||||||||||||||||||||||||||||||||||||||||
| Veranstaltungstitel: | 2025 IEEE International Conference on Robotics and Automation (ICRA) | ||||||||||||||||||||||||||||||||||||||||
| Veranstaltungsort: | Atlanta, GA, USA | ||||||||||||||||||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||||||||||
| Veranstaltungsbeginn: | 19 Mai 2025 | ||||||||||||||||||||||||||||||||||||||||
| Veranstaltungsende: | 23 Mai 2025 | ||||||||||||||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||
| HGF - Programmthema: | Kommunikation, Navigation, Quantentechnologien | ||||||||||||||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R KNQ - Kommunikation, Navigation, Quantentechnologie | ||||||||||||||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Schwarmnavigation, V - INTAS - Intelligente Ad-Hoc Sensornetzwerke | ||||||||||||||||||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||||||||||||||||||||||||||
| Hinterlegt von: | Wiedemann, Thomas | ||||||||||||||||||||||||||||||||||||||||
| Hinterlegt am: | 30 Sep 2025 13:55 | ||||||||||||||||||||||||||||||||||||||||
| Letzte Änderung: | 30 Sep 2025 13:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags