Banze, Aaron und Stassin, Timothée und Ait Ali Braham, Nassim und Kuzu, Ridvan Salih und Besnard, Simon und Schmitt, Michael (2025) HyBiomass: Global Hyperspectral Imagery Benchmark Dataset for Evaluating Geospatial Foundation Models in Forest Aboveground Biomass Estimation. IEEE Geoscience and Remote Sensing Letters, 22, Seite 5509405. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2025.3610178. ISSN 1545-598X.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/11164504
Kurzfassung
Comprehensive evaluation of geospatial foundation models (Geo-FMs) requires benchmarking across diverse tasks, sensors, and geographic regions. However, most existing benchmark datasets are limited to segmentation or classification tasks, and focus on specific geographic areas. To address this gap, we introduce a globally distributed dataset for forest aboveground biomass (AGB) estimation, a pixelwise regression task. This benchmark dataset combines co-located hyperspectral imagery (HSI) from the Environmental Mapping and Analysis Program (EnMAP) satellite and predictions of AGB density estimates derived from the global ecosystem dynamics investigation (GEDI) lidars, covering seven continental regions. Our experimental results on this dataset demonstrate that the evaluated Geo- FMs can match or, in some cases, surpass the performance of a baseline U-Net, especially when fine-tuning the encoder. We also find that the performance difference between the U-Net and Geo-FMs depends on the dataset size for each region and highlight the importance of the token patch size in the Vision Transformer (ViT) backbone for accurate predictions in pixelwise regression tasks. By releasing this globally distributed hyperspectral benchmark dataset, we aim to facilitate the development and evaluation of Geo-FMs for HSI applications. Leveraging this dataset additionally enables research into geographic bias and the generalization capacity of Geo-FMs.
| elib-URL des Eintrags: | https://elib.dlr.de/216910/ | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
| Zusätzliche Informationen: | This work was supported in part by the HYPER-AMPLIFAI Project funded by the Helmholtz Association of German Research Centres (HGF) under Contract ZT-I-PF-4-056 and in part by European Space Agency (ESA) as part of the Fostering Advancements in Foundation Models via Unsupervised and Self-Supervised Learning for Downstream Tasks in Earth Observation (FAST-EO) Project under Contract 4000143501/23/I-DT | ||||||||||||||||||||||||||||
| Titel: | HyBiomass: Global Hyperspectral Imagery Benchmark Dataset for Evaluating Geospatial Foundation Models in Forest Aboveground Biomass Estimation | ||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||
| Datum: | 15 September 2025 | ||||||||||||||||||||||||||||
| Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
| Band: | 22 | ||||||||||||||||||||||||||||
| DOI: | 10.1109/LGRS.2025.3610178 | ||||||||||||||||||||||||||||
| Seitenbereich: | Seite 5509405 | ||||||||||||||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
| ISSN: | 1545-598X | ||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||
| Stichwörter: | Aboveground biomass (AGB), Environmental Mapping and Analysis Program (EnMAP), geospatial foundation models (Geo-FMs), global ecosystem dynamics investigation (GEDI), hyperspectral imagery (HSI), remote sensing | ||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||
| Hinterlegt von: | Kuzu, Dr. Ridvan Salih | ||||||||||||||||||||||||||||
| Hinterlegt am: | 30 Sep 2025 10:21 | ||||||||||||||||||||||||||||
| Letzte Änderung: | 08 Nov 2025 19:41 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags