elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Prediction of Mechanical Properties for tape-layered Specimen using Finite Element Method and Machine Learning

Lupprian, Carolin (2025) Prediction of Mechanical Properties for tape-layered Specimen using Finite Element Method and Machine Learning. Masterarbeit, Karlsruher Institut für Technologie KIT.

[img] PDF
5MB

Kurzfassung

The production of fibre composite components using the Automated Fibre Placement (AFP) process is often confronted by manufacturing-related defects, such as gaps or overlaps between tapes. These defects can influence the material properties in different ways, depending on their characteristics. While the Finite Element (FE) Method can be used to investigate these effects, it requires expert knowledge and significant computational resources. The aim of this work is therefore to predict the mechanical properties using machine learning (ML) methods trained on compression tests simulated with LS-DYNA. First, an FE modelling approach and material model are developed with the goal of minimising both computation time and deviation from experimental test data. Subsequently, 1000 FE models are generated with random defect configurations by varying parameters such as position, size, and number of defects with the help of a developed Python routine. Two different ML methods, namely Random Forest (RF) and Support Vector Regression (SVR), are then applied and further improved in terms of their performance. Both models achieved promising results, with stiffness and strength predictions reaching a Mean Absolute Percentage Error (MAPE) of 3 to 7%. However, the prediction of post-failure behaviour showed limited accuracy, with a MAPE of around 50% due to numerical issues.

elib-URL des Eintrags:https://elib.dlr.de/216832/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Prediction of Mechanical Properties for tape-layered Specimen using Finite Element Method and Machine Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Lupprian, Carolincarolin.lupprian (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorVinot, MathieuMathieu.Vinot (at) dlr.dehttps://orcid.org/0000-0003-3394-5142
Datum:1 September 2025
Open Access:Ja
Seitenanzahl:91
Status:veröffentlicht
Stichwörter:In-situ tape laying, Machine Learning, Random-Forest, Support Vector Regression, Finite-Element Simulation, Mesoscopic Approach
Institution:Karlsruher Institut für Technologie KIT
Abteilung:Department of Mathematics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Schienenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V SC Schienenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - ProCo - Propulsion and Coupling
Standort: Stuttgart
Institute & Einrichtungen:Institut für Bauweisen und Strukturtechnologie > Strukturelle Integrität
Hinterlegt von: Vinot, Mathieu
Hinterlegt am:07 Okt 2025 12:16
Letzte Änderung:07 Okt 2025 12:16

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.